A concise fractional Fourier transform (CFRFT) is proposed to detect the linear frequency-modulated (LFM) signal with low signal to noise ratio (SNR). The frequency axis in time-frequency plane of the CFRFT is r...A concise fractional Fourier transform (CFRFT) is proposed to detect the linear frequency-modulated (LFM) signal with low signal to noise ratio (SNR). The frequency axis in time-frequency plane of the CFRFT is rotated to get the spectrum of the signal in different an- gles using chirp multiplication and Fourier transform (FT). For LFM signal which distributes as a straight line in time-frequency plane, the CFRFT can gather the energy in the corresponding angle as a peak and improve the detection SNR, thus the LFM signal of low SNR can be de- tected. Meanwhile, the location of the peak value relates to the parameters of the LFM signal. Numerical simulations and experimental results show that, the proposed method can be used to efficiently detect the LFM signal masked by noise and to estimate the signal's parameters accurately. Compared with the conventional fractional Fourier transform (FRFT), the CFRFT reduces the transform complexity and improves the real-time detection performance of LFM signal.展开更多
A technique for measuring the linearity of a linearly frequency-modulated continuous wave (LFM-CW) signal is presented. It uses a delay-line and a mixer to sense the slope of the output of a sweep oscillator, so that ...A technique for measuring the linearity of a linearly frequency-modulated continuous wave (LFM-CW) signal is presented. It uses a delay-line and a mixer to sense the slope of the output of a sweep oscillator, so that the original form of frequency function deviated from idealized linear slope is retrieved by means of spectrum analysis. Consequently,the linearity of the LFM signal is determined. The formulation is performed based on the principle that an angle-modulated signal can be approximated by an amplitude-modulated signal if the modulation coefficient is sufficiently small. To examine the validity of the procedure and to study the effect of each parameter on the accuracy of measurement, a number of computer simulations has been made. The results of simulation show that the error of the measurement is less than 2%.展开更多
Early detection of sudden cardiac death may be used for surviving the life of cardiac patients. In this paper we have investigated an algorithm to detect and predict sudden cardiac death, by processing of heart rate v...Early detection of sudden cardiac death may be used for surviving the life of cardiac patients. In this paper we have investigated an algorithm to detect and predict sudden cardiac death, by processing of heart rate variability signal through the classical and time-frequency methods. At first, one minute of ECG signals, just before the cardiac death event are extracted and used to compute heart rate variability (HRV) signal. Five features in time domain and four features in frequency domain are extracted from the HRV signal and used as classical linear features. Then the Wigner Ville transform is applied to the HRV signal, and 11 extra features in the time-frequency (TF) domain are obtained. In order to improve the performance of classification, the principal component analysis (PCA) is applied to the obtained features vector. Finally a neural network classifier is applied to the reduced features. The obtained results show that the TF method can classify normal and SCD subjects, more efficiently than the classical methods. A MIT-BIH ECG database was used to evaluate the proposed method. The proposed method was implemented using MLP classifier and had 74.36% and 99.16% correct detection rate (accuracy) for classical features and TF method, respectively. Also, the accuracy of the KNN classifier were 73.87% and 96.04%.展开更多
Based on the constant modulus criterion, a new Widely Linear(WL) blind equalizer and a novel widely linear recursive least square constant modulus algorithm are proposed to improve the blind equalization performance f...Based on the constant modulus criterion, a new Widely Linear(WL) blind equalizer and a novel widely linear recursive least square constant modulus algorithm are proposed to improve the blind equalization performance for complex-valued noncircular signals. The new algorithm takes advantage of the WL filtering theory by taking full use of second-order statistical information of the complex-valued noncircular signals. Therefore, the weight vector contains the complete second-order information of the real and imaginary parts to decrease the residual inter-symbol interference effectively. Theoretical analysis and simulation results show that the proposed scheme can significantly improve the equalization performance for complex-valued noncircular signals compared with traditional blind equalization algorithms.展开更多
A linear system driven by dichotomous noise and a periodic signal is investigated in the underdamped case. The exact expressions of output signal amplitude and signal-to-noise ratio (SNR) of the system are derived. ...A linear system driven by dichotomous noise and a periodic signal is investigated in the underdamped case. The exact expressions of output signal amplitude and signal-to-noise ratio (SNR) of the system are derived. By means of numerical calculation, the results indicate that (i) at some fixed noise intensities, the output signal amplitude with inertial mass exhibits the structure of a single peak and single valley, or even two peaks if the dichotomous noise is asymmetric; (ii) in the case of asymmetric dichotomous noise, the inertial mass can cause non-monotonic behaviour of the output signal amplitude with respect to noise intensity; (iii) the curve of SNR versus inertial mass displays a maximum in the case of asymmetric dichotomous noise, i.e., a resonance-like phenomenon, while it decreases monotonically in the case of symmetric dichotomous noise; (iv) if the noise is symmetric, the inertial mass can induce stochastic resonance in the system.展开更多
In view of the complexity of existing linear frequency modulation(LFM)signal parameter estimation methods and the poor antinoise performance and estimation accuracy under a low signal-to-noise ratio(SNR),a parameter e...In view of the complexity of existing linear frequency modulation(LFM)signal parameter estimation methods and the poor antinoise performance and estimation accuracy under a low signal-to-noise ratio(SNR),a parameter estimation method for LFM signals with a Duffing oscillator based on frequency periodicity is proposed in this paper.This method utilizes the characteristic that the output signal of the Duffing oscillator excited by the LFM signal changes periodically with frequency,and the modulation period of the LFM signal is estimated by autocorrelation processing of the output signal of the Duffing oscillator.On this basis,the corresponding relationship between the reference frequency of the frequencyaligned Duffing oscillator and the frequency range of the LFM signal is analyzed by the periodic power spectrum method,and the frequency information of the LFM signal is determined.Simulation results show that this method can achieve high-accuracy parameter estimation for LFM signals at an SNR of-25 dB.展开更多
A model of continuous-time insider trading in which a risk-neutral in-sider possesses two imperfect correlated signals of a risky asset is studied.By conditional expectation theory and filtering theory,we first establ...A model of continuous-time insider trading in which a risk-neutral in-sider possesses two imperfect correlated signals of a risky asset is studied.By conditional expectation theory and filtering theory,we first establish three lemmas:normal corre-lation,equivalent pricing and equivalent profit,which can guarantee to turn our model into a model with insider knowing full information.Then we investigate the impact of the two correlated signals on the market equilibrium consisting of optimal insider trading strategy and semi-strong pricing rule.It shows that in the equilibrium,(1)the market depth is constant over time;(2)if the two noisy signals are not linerly correlated,then all private information of the insider is incorporated into prices in the end while the whole information on the asset value can not incorporated into prices in the end;(3)if the two noisy signals are linear correlated such that the insider can infer the whole information of the asset value,then our model turns into a model with insider knowing full information;(4)if the two noisy signals are the same then the total ex ant profit of the insider is increasing with the noise decreasing,while down to O as the noise going up to infinity;(5)if the two noisy signals are not linear correlated then with one noisy signal fixed,the total ex ante profit of the insider is single-peaked with a unique minimum with respect to the other noisy signal value,and furthermore as the noisy value going to O it gets its maximum,the profit in the case that the real value is observed.展开更多
Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which ent...Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.展开更多
A new method uses a linear array that takes advantage of underwater physical sound fields to estimate the velocity of an underwater moving target. The mathematical model was established by considering the geometric re...A new method uses a linear array that takes advantage of underwater physical sound fields to estimate the velocity of an underwater moving target. The mathematical model was established by considering the geometric relationship between the moving target installed with only two transducers to radiate sound of different frequencies and the linear array. In addition, deterministic maximum likelihood and signal phase matching algorithms were introduced to effectively find the directions of arrival (DOAs) of the sound sources of the two transducers installed on the target. Factors causing velocity measurement errors were considered. To track the target, a linear array with a compass, a pressure transducer, a signal conditioner and a digital recorder was configured. Relevant requirements for the array parameters were derived. The simulation showed that a 16-element array with an aperture of less than lm can measure velocity with relative error of no more', than 4% when including typical system errors. Anechoic pool and reservoir experiments confirmed these results.展开更多
In this paper, the marginal Rao-Blackwellized particle filter (MRBPF), which fuses the Rao-Blackwellized particle filter (RBPF) algorithm and the marginal particle filter (MPF) algorithm, is presented. The state...In this paper, the marginal Rao-Blackwellized particle filter (MRBPF), which fuses the Rao-Blackwellized particle filter (RBPF) algorithm and the marginal particle filter (MPF) algorithm, is presented. The state space is divided into linear and non-linear parts, which can be estimated separately by the MPF and the optional Kalman filter. Through simulation in the terrain aided navigation (TAN) domain, it is demonstrated that, compared with the RBPF, the root mean square errors (RMSE) and the error variance of the nonlinear state estimations by the proposed MRBPF are respectively reduced by 29% and 96%, while the unique particle count is increased by 80%. It is also found that the MRBPF has better convergence properties, and analysis has shown that the existing RBPF is nothing more than a special case of the MRBPF.展开更多
Distinguishing close chirp-rates of different linear frequency modulation (LFM) signals under concentrated and complicated signal environment was studied. Firstly, detection and parameter estimation of multi-compone...Distinguishing close chirp-rates of different linear frequency modulation (LFM) signals under concentrated and complicated signal environment was studied. Firstly, detection and parameter estimation of multi-component LFM signal were used by discrete fast fractional Fourier transform (FrFT). Then the expression of chirp-rate resolution in fractional Fourier domain (FrFD) was deduced from discrete normalize time-frequency distribution, when multi-component LFM signal had only one center frequency. Furthermore, the detail influence of the sampling time, sampling frequency and chirp-rate upon the resolution was analyzed by partial differential equation. Simulation results and analysis indicate that increasing the sampling time can enhance the resolution, but the influence of the sampling frequency can he omitted. What's more, in multi-component LFM signal, the chirp-rate resolution of FrFT is no less than a minimal value, and it mainly dependent on the biggest value of chirp-rates, with which it has an approximately positive exponential relationship.展开更多
To enhance the capacity of the radar-reconnaissance interception receiver recognizing linear frequency modulated (LFM) at a low signal-noise ratio, this paper presents WignerHough transform (WHT) of the LFM signal and...To enhance the capacity of the radar-reconnaissance interception receiver recognizing linear frequency modulated (LFM) at a low signal-noise ratio, this paper presents WignerHough transform (WHT) of the LFM signal and its corresponding characteristics, derives the probability density functions of the LFM signal and Gaussian white noise within WHT based on entropy (WHTE), dimension under different assumptions and puts forward a WHT algorithm based on entropy of slice to improve the capacity of detecting the LFM signal. Entropy of the WHT domain slice is adopted to assess the information size of polar radius or angle slice, which is converted into the weight factor to weight every slice. Double-deck weight is used to weaken the influences of noise and disturbance terms and WHTE treatment and signal detection procedure are also summarized. The rationality of the algorithm is demonstrated through theoretical analysis and formula derivation, the efficiency of the algorithm is verified by simulation comparison between WHT, fractional Fourier transform and periodic WHT, and it is highlighted that the WHTE algorithm has better detection accuracy and range of application against strong noise background.展开更多
The Radon-ambiguity transform (RAT), although efficient for detecting the linear frequency modulated signals (LFMs), is troubled by the energy accumulation of noise in low signal-to-noise ratio (SNR). A secondor...The Radon-ambiguity transform (RAT), although efficient for detecting the linear frequency modulated signals (LFMs), is troubled by the energy accumulation of noise in low signal-to-noise ratio (SNR). A secondorder difference (SOD) method is proposed to treat with this problem. In the SOD method, the optimal search step and difference step are derived from the LFM rate resolution formula. The sharpness of the peaks of RAT is measured by curvature, and the sharpness, but not the magnitude of the peaks, is used to detect the LFMs. The SOD method removes the noise energy accumulation and reserves the drastically changing components integrally; thus, it improves the detection probability of LFMs in low SNR. The expected performance of the new method is verified by 100 Monte Carlo simulations.展开更多
The instantaneous frequency (IF) estimation of the linear frequency modulated (LFM) signals with time-varying amplitude using the peak of the Wigner-Ville distribution (WVD) is studied. Theoretical analysis show...The instantaneous frequency (IF) estimation of the linear frequency modulated (LFM) signals with time-varying amplitude using the peak of the Wigner-Ville distribution (WVD) is studied. Theoretical analysis shows that the estimation on LFM signals with time-varying amplitude is unbiased, only if WVD of time-varying amplitude reaches its maximum at frequency zero no matter in which time. The statistical performance in the case of additive white Guassian noise is evaluated and an analytical expression for the variance is provided. The simulations using LFM signals with Gaussian envelope testify that IF can be estimated accurately using the peak of WVD for four models of amplitude variation. Furthermore the statistical result of estimation on the signals with amplitude descending before rising is better than that of the signals with constant amplitude when the amplitude variation rate is moderate.展开更多
Vehicle positioning with the global navigation satellite system (GNSS) in urban environments faces two problems which are attenuation and dynamic. For traditional GNSS receivers hardly able to track dynamic weak sig...Vehicle positioning with the global navigation satellite system (GNSS) in urban environments faces two problems which are attenuation and dynamic. For traditional GNSS receivers hardly able to track dynamic weak signals, the coupling between all visible satellite signals is ignored in the absence of navigation state feedback, and thermal noise error and dynamic stress threshold are contradictory due to non-coherent discriminators. The vector delay/frequency locked loop (VDFLL) with navigation state feedback and the joint vector tracking loop (JVTL) with coherent discriminator which is a synchronization parameter tracking loop based on maximum likelihood estimation (MLE) are proposed to improve the tracking sensitivity of GNSS receiver in dynamic weak signal environments. A joint vector position tracking loop (JVPTL) directly tracking user position and velocity is proposed to further improve tracking sensitivity. The coherent navigation parameter discriminator of JVPTL, being able to ease the contradiction between thermal noise error and dynamic stress threshold, is based on MLE according to the navigation parameter based linear model of received baseband signals. Simulation results show that JVPTL, which combines the advantages of both VDFLL and JVTL, performs better than both VDFLL and JVTL in dynamic weak signal environments.展开更多
The neutron flux monitor(NFM)system is an important diagnostic subsystem introduced by large nuclear fusion devices such as international thermonuclear experimental reactor(ITER),Japan torus-60,tokamak fusion test rea...The neutron flux monitor(NFM)system is an important diagnostic subsystem introduced by large nuclear fusion devices such as international thermonuclear experimental reactor(ITER),Japan torus-60,tokamak fusion test reactor,and HL-2 A.Neutron fluxes can provide real-time parameters for nuclear fusion,including neutron source intensity and fusion power.Corresponding to different nuclear reaction periods,neutron fluxes span over seven decades,thereby requiring electronic devices to operate in counting and Campbelling modes simultaneously.Therefore,it is crucial to design a real-time NFM system to encompass such a wide dynamic range.In this study,a high-precision NFM system with a wide measurement range of neutron flux is implemented using realtime multipoint linear calibration.It can automatically switch between counting and Campbelling modes with variations in the neutron flux.We established a testing platform to verify the feasibility of the NFM system,which can output the simulated neutron signal using an arbitrary waveform generator.Meanwhile,the accurate calibration interval of the Campbelling mode is defined well.Based on the above-mentioned design,the system satisfies the requirements,offering a dynamic range of 10~8 cps,temporal resolution of 1 ms,and maximal relative error of 4%measured at the signal-to-noise ratio of 15.8 dB.Additionally,the NFM system is verified in a field experiment involving HL-2 A,and the measured neutron flux is consistent with the results.展开更多
A novel algorithm based on Radon-Ambiguity Transform (RAT) and Adaptive Signal Decomposition (ASD) is presented for the detection and parameter estimation of multicompo-nent Linear Frequency Modulated (LFM) signals. T...A novel algorithm based on Radon-Ambiguity Transform (RAT) and Adaptive Signal Decomposition (ASD) is presented for the detection and parameter estimation of multicompo-nent Linear Frequency Modulated (LFM) signals. The key problem lies in the chirplet estimation. Genetic algorithm is employed to search for the optimization parameter of chirplet. High estimation accuracy can be obtained even at low Signal-to-Noisc Ratio(SNR). Finally simulation results are provided to demonstrate the performance of the proposed algorithm.展开更多
To improve the identification capability of AP algorithm in time-varying sparse system, we propose a block parallel l_0-SWL-DCD-AP algorithm in this paper. In the proposed algorithm, we first introduce the l_0-norm co...To improve the identification capability of AP algorithm in time-varying sparse system, we propose a block parallel l_0-SWL-DCD-AP algorithm in this paper. In the proposed algorithm, we first introduce the l_0-norm constraint to promote its application for sparse system. Second, we use the shrinkage denoising method to improve its track ability. Third, we adopt the widely linear processing to take advantage of the non-circular properties of communication signals. Last, to reduce the high computational complexity and make it easy to implemented, we utilize the dichotomous coordinate descent(DCD) iterations and the parallel processing to deal with the tapweight update in the proposed algorithm. To verify the convergence condition of the proposed algorithm, we also analyze its steadystate behavior. Several simulation are done and results show that the proposed algorithm can achieve a faster convergence speed and a lower steady-state misalignment than similar APA-type algorithm. When apply the proposed algorithm in the decision feedback equalizer(DFE), the bite error rate(BER) decreases obviously.展开更多
An uncertainty principle(UP),which offers information about a signal and its Fourier transform in the time-frequency plane,is particularly powerful in mathematics,physics and signal processing community.Under the pola...An uncertainty principle(UP),which offers information about a signal and its Fourier transform in the time-frequency plane,is particularly powerful in mathematics,physics and signal processing community.Under the polar coordinate form of quaternion-valued signals,the UP of the two-sided quaternion linear canonical transform(QLCT)is strengthened in terms of covariance.The condition giving rise to the equal relation of the derived result is obtained as well.The novel UP with covariance can be regarded as one in a tighter form related to the QLCT.It states that the product of spreads of a quaternion-valued signal in the spatial domain and the QLCT domain is bounded by a larger lower bound.展开更多
Zero-field single-beam atomic magnetometers with transverse parametric modulation for ultra-weak magnetic field detection have attracted widespread attention recently.In this study,we present a comprehensive response ...Zero-field single-beam atomic magnetometers with transverse parametric modulation for ultra-weak magnetic field detection have attracted widespread attention recently.In this study,we present a comprehensive response model and propose a modification method of conventional first harmonic response by introducing the second harmonic correction.The proposed modification method gives improvement in dynamic range and reduction of linearity error.Additionally,our modification method shows suppression of response instability caused by optical intensity and frequency fluctuations.An atomic magnetometer with single-beam configuration is built to compare the performance between our proposed method and the conventional method.The results indicate that our method’s magnetic field response signal achieves a 5-fold expansion of dynamic range from 2 nT to 10 nT,with the linearity error decreased from 5%to 1%.Under the fluctuations of 5%for optical intensity and±15 GHz detuning of frequency,the proposed modification method maintains intensityrelated instability less than 1%and frequency-related instability less than 8%while the conventional method suffers 15%and 38%,respectively.Our method is promising for future high-sensitive and long-term stable optically pumped atomic sensors.展开更多
基金supported by the National Natural Science Foundation of China(11434012)
文摘A concise fractional Fourier transform (CFRFT) is proposed to detect the linear frequency-modulated (LFM) signal with low signal to noise ratio (SNR). The frequency axis in time-frequency plane of the CFRFT is rotated to get the spectrum of the signal in different an- gles using chirp multiplication and Fourier transform (FT). For LFM signal which distributes as a straight line in time-frequency plane, the CFRFT can gather the energy in the corresponding angle as a peak and improve the detection SNR, thus the LFM signal of low SNR can be de- tected. Meanwhile, the location of the peak value relates to the parameters of the LFM signal. Numerical simulations and experimental results show that, the proposed method can be used to efficiently detect the LFM signal masked by noise and to estimate the signal's parameters accurately. Compared with the conventional fractional Fourier transform (FRFT), the CFRFT reduces the transform complexity and improves the real-time detection performance of LFM signal.
文摘A technique for measuring the linearity of a linearly frequency-modulated continuous wave (LFM-CW) signal is presented. It uses a delay-line and a mixer to sense the slope of the output of a sweep oscillator, so that the original form of frequency function deviated from idealized linear slope is retrieved by means of spectrum analysis. Consequently,the linearity of the LFM signal is determined. The formulation is performed based on the principle that an angle-modulated signal can be approximated by an amplitude-modulated signal if the modulation coefficient is sufficiently small. To examine the validity of the procedure and to study the effect of each parameter on the accuracy of measurement, a number of computer simulations has been made. The results of simulation show that the error of the measurement is less than 2%.
文摘Early detection of sudden cardiac death may be used for surviving the life of cardiac patients. In this paper we have investigated an algorithm to detect and predict sudden cardiac death, by processing of heart rate variability signal through the classical and time-frequency methods. At first, one minute of ECG signals, just before the cardiac death event are extracted and used to compute heart rate variability (HRV) signal. Five features in time domain and four features in frequency domain are extracted from the HRV signal and used as classical linear features. Then the Wigner Ville transform is applied to the HRV signal, and 11 extra features in the time-frequency (TF) domain are obtained. In order to improve the performance of classification, the principal component analysis (PCA) is applied to the obtained features vector. Finally a neural network classifier is applied to the reduced features. The obtained results show that the TF method can classify normal and SCD subjects, more efficiently than the classical methods. A MIT-BIH ECG database was used to evaluate the proposed method. The proposed method was implemented using MLP classifier and had 74.36% and 99.16% correct detection rate (accuracy) for classical features and TF method, respectively. Also, the accuracy of the KNN classifier were 73.87% and 96.04%.
基金Supported by the National Natural Science Foundation of China(No.61072046)the Basic Scientific and Technological Frontier Project of Henan Province(No.1123004100322)
文摘Based on the constant modulus criterion, a new Widely Linear(WL) blind equalizer and a novel widely linear recursive least square constant modulus algorithm are proposed to improve the blind equalization performance for complex-valued noncircular signals. The new algorithm takes advantage of the WL filtering theory by taking full use of second-order statistical information of the complex-valued noncircular signals. Therefore, the weight vector contains the complete second-order information of the real and imaginary parts to decrease the residual inter-symbol interference effectively. Theoretical analysis and simulation results show that the proposed scheme can significantly improve the equalization performance for complex-valued noncircular signals compared with traditional blind equalization algorithms.
基金supported by the National Natural Science Foundations of China (Grant No. 10847139)the Science Foundation of Yunnan Province of China (Grant Nos. 2009CD036 and 08Z0015)
文摘A linear system driven by dichotomous noise and a periodic signal is investigated in the underdamped case. The exact expressions of output signal amplitude and signal-to-noise ratio (SNR) of the system are derived. By means of numerical calculation, the results indicate that (i) at some fixed noise intensities, the output signal amplitude with inertial mass exhibits the structure of a single peak and single valley, or even two peaks if the dichotomous noise is asymmetric; (ii) in the case of asymmetric dichotomous noise, the inertial mass can cause non-monotonic behaviour of the output signal amplitude with respect to noise intensity; (iii) the curve of SNR versus inertial mass displays a maximum in the case of asymmetric dichotomous noise, i.e., a resonance-like phenomenon, while it decreases monotonically in the case of symmetric dichotomous noise; (iv) if the noise is symmetric, the inertial mass can induce stochastic resonance in the system.
基金Project supported by the National Natural Science Foundation of China(Grant No.61973037)。
文摘In view of the complexity of existing linear frequency modulation(LFM)signal parameter estimation methods and the poor antinoise performance and estimation accuracy under a low signal-to-noise ratio(SNR),a parameter estimation method for LFM signals with a Duffing oscillator based on frequency periodicity is proposed in this paper.This method utilizes the characteristic that the output signal of the Duffing oscillator excited by the LFM signal changes periodically with frequency,and the modulation period of the LFM signal is estimated by autocorrelation processing of the output signal of the Duffing oscillator.On this basis,the corresponding relationship between the reference frequency of the frequencyaligned Duffing oscillator and the frequency range of the LFM signal is analyzed by the periodic power spectrum method,and the frequency information of the LFM signal is determined.Simulation results show that this method can achieve high-accuracy parameter estimation for LFM signals at an SNR of-25 dB.
文摘A model of continuous-time insider trading in which a risk-neutral in-sider possesses two imperfect correlated signals of a risky asset is studied.By conditional expectation theory and filtering theory,we first establish three lemmas:normal corre-lation,equivalent pricing and equivalent profit,which can guarantee to turn our model into a model with insider knowing full information.Then we investigate the impact of the two correlated signals on the market equilibrium consisting of optimal insider trading strategy and semi-strong pricing rule.It shows that in the equilibrium,(1)the market depth is constant over time;(2)if the two noisy signals are not linerly correlated,then all private information of the insider is incorporated into prices in the end while the whole information on the asset value can not incorporated into prices in the end;(3)if the two noisy signals are linear correlated such that the insider can infer the whole information of the asset value,then our model turns into a model with insider knowing full information;(4)if the two noisy signals are the same then the total ex ant profit of the insider is increasing with the noise decreasing,while down to O as the noise going up to infinity;(5)if the two noisy signals are not linear correlated then with one noisy signal fixed,the total ex ante profit of the insider is single-peaked with a unique minimum with respect to the other noisy signal value,and furthermore as the noisy value going to O it gets its maximum,the profit in the case that the real value is observed.
基金supported by National Natural Science Foundation of China(62371225,62371227)。
文摘Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.
基金Supported by the National Science Foundation of China under Grant No.60672136
文摘A new method uses a linear array that takes advantage of underwater physical sound fields to estimate the velocity of an underwater moving target. The mathematical model was established by considering the geometric relationship between the moving target installed with only two transducers to radiate sound of different frequencies and the linear array. In addition, deterministic maximum likelihood and signal phase matching algorithms were introduced to effectively find the directions of arrival (DOAs) of the sound sources of the two transducers installed on the target. Factors causing velocity measurement errors were considered. To track the target, a linear array with a compass, a pressure transducer, a signal conditioner and a digital recorder was configured. Relevant requirements for the array parameters were derived. The simulation showed that a 16-element array with an aperture of less than lm can measure velocity with relative error of no more', than 4% when including typical system errors. Anechoic pool and reservoir experiments confirmed these results.
基金National Natural Science Foundation of China (60572023)
文摘In this paper, the marginal Rao-Blackwellized particle filter (MRBPF), which fuses the Rao-Blackwellized particle filter (RBPF) algorithm and the marginal particle filter (MPF) algorithm, is presented. The state space is divided into linear and non-linear parts, which can be estimated separately by the MPF and the optional Kalman filter. Through simulation in the terrain aided navigation (TAN) domain, it is demonstrated that, compared with the RBPF, the root mean square errors (RMSE) and the error variance of the nonlinear state estimations by the proposed MRBPF are respectively reduced by 29% and 96%, while the unique particle count is increased by 80%. It is also found that the MRBPF has better convergence properties, and analysis has shown that the existing RBPF is nothing more than a special case of the MRBPF.
基金Sponsored by the National Natural Science Foundation of China (60232010 ,60572094)the National Science Foundation of China for Distin-guished Young Scholars (60625104)
文摘Distinguishing close chirp-rates of different linear frequency modulation (LFM) signals under concentrated and complicated signal environment was studied. Firstly, detection and parameter estimation of multi-component LFM signal were used by discrete fast fractional Fourier transform (FrFT). Then the expression of chirp-rate resolution in fractional Fourier domain (FrFD) was deduced from discrete normalize time-frequency distribution, when multi-component LFM signal had only one center frequency. Furthermore, the detail influence of the sampling time, sampling frequency and chirp-rate upon the resolution was analyzed by partial differential equation. Simulation results and analysis indicate that increasing the sampling time can enhance the resolution, but the influence of the sampling frequency can he omitted. What's more, in multi-component LFM signal, the chirp-rate resolution of FrFT is no less than a minimal value, and it mainly dependent on the biggest value of chirp-rates, with which it has an approximately positive exponential relationship.
基金supported by the Aeronautical Science Fund of China(201455960252015209619)
文摘To enhance the capacity of the radar-reconnaissance interception receiver recognizing linear frequency modulated (LFM) at a low signal-noise ratio, this paper presents WignerHough transform (WHT) of the LFM signal and its corresponding characteristics, derives the probability density functions of the LFM signal and Gaussian white noise within WHT based on entropy (WHTE), dimension under different assumptions and puts forward a WHT algorithm based on entropy of slice to improve the capacity of detecting the LFM signal. Entropy of the WHT domain slice is adopted to assess the information size of polar radius or angle slice, which is converted into the weight factor to weight every slice. Double-deck weight is used to weaken the influences of noise and disturbance terms and WHTE treatment and signal detection procedure are also summarized. The rationality of the algorithm is demonstrated through theoretical analysis and formula derivation, the efficiency of the algorithm is verified by simulation comparison between WHT, fractional Fourier transform and periodic WHT, and it is highlighted that the WHTE algorithm has better detection accuracy and range of application against strong noise background.
基金supported by the Program for New Century Excellent Talents in University, Ministry of Education (NCET-05-0803)
文摘The Radon-ambiguity transform (RAT), although efficient for detecting the linear frequency modulated signals (LFMs), is troubled by the energy accumulation of noise in low signal-to-noise ratio (SNR). A secondorder difference (SOD) method is proposed to treat with this problem. In the SOD method, the optimal search step and difference step are derived from the LFM rate resolution formula. The sharpness of the peaks of RAT is measured by curvature, and the sharpness, but not the magnitude of the peaks, is used to detect the LFMs. The SOD method removes the noise energy accumulation and reserves the drastically changing components integrally; thus, it improves the detection probability of LFMs in low SNR. The expected performance of the new method is verified by 100 Monte Carlo simulations.
文摘The instantaneous frequency (IF) estimation of the linear frequency modulated (LFM) signals with time-varying amplitude using the peak of the Wigner-Ville distribution (WVD) is studied. Theoretical analysis shows that the estimation on LFM signals with time-varying amplitude is unbiased, only if WVD of time-varying amplitude reaches its maximum at frequency zero no matter in which time. The statistical performance in the case of additive white Guassian noise is evaluated and an analytical expression for the variance is provided. The simulations using LFM signals with Gaussian envelope testify that IF can be estimated accurately using the peak of WVD for four models of amplitude variation. Furthermore the statistical result of estimation on the signals with amplitude descending before rising is better than that of the signals with constant amplitude when the amplitude variation rate is moderate.
基金supported by the National Natural Science Foundation for Young Scientists of China(61201190)
文摘Vehicle positioning with the global navigation satellite system (GNSS) in urban environments faces two problems which are attenuation and dynamic. For traditional GNSS receivers hardly able to track dynamic weak signals, the coupling between all visible satellite signals is ignored in the absence of navigation state feedback, and thermal noise error and dynamic stress threshold are contradictory due to non-coherent discriminators. The vector delay/frequency locked loop (VDFLL) with navigation state feedback and the joint vector tracking loop (JVTL) with coherent discriminator which is a synchronization parameter tracking loop based on maximum likelihood estimation (MLE) are proposed to improve the tracking sensitivity of GNSS receiver in dynamic weak signal environments. A joint vector position tracking loop (JVPTL) directly tracking user position and velocity is proposed to further improve tracking sensitivity. The coherent navigation parameter discriminator of JVPTL, being able to ease the contradiction between thermal noise error and dynamic stress threshold, is based on MLE according to the navigation parameter based linear model of received baseband signals. Simulation results show that JVPTL, which combines the advantages of both VDFLL and JVTL, performs better than both VDFLL and JVTL in dynamic weak signal environments.
基金supported by the National Natural Science Foundation of China(Nos.11475131,11975307,and 11575184)the National Magnetic Confinement Fusion Energy Development Research(No.2013GB104003)。
文摘The neutron flux monitor(NFM)system is an important diagnostic subsystem introduced by large nuclear fusion devices such as international thermonuclear experimental reactor(ITER),Japan torus-60,tokamak fusion test reactor,and HL-2 A.Neutron fluxes can provide real-time parameters for nuclear fusion,including neutron source intensity and fusion power.Corresponding to different nuclear reaction periods,neutron fluxes span over seven decades,thereby requiring electronic devices to operate in counting and Campbelling modes simultaneously.Therefore,it is crucial to design a real-time NFM system to encompass such a wide dynamic range.In this study,a high-precision NFM system with a wide measurement range of neutron flux is implemented using realtime multipoint linear calibration.It can automatically switch between counting and Campbelling modes with variations in the neutron flux.We established a testing platform to verify the feasibility of the NFM system,which can output the simulated neutron signal using an arbitrary waveform generator.Meanwhile,the accurate calibration interval of the Campbelling mode is defined well.Based on the above-mentioned design,the system satisfies the requirements,offering a dynamic range of 10~8 cps,temporal resolution of 1 ms,and maximal relative error of 4%measured at the signal-to-noise ratio of 15.8 dB.Additionally,the NFM system is verified in a field experiment involving HL-2 A,and the measured neutron flux is consistent with the results.
文摘A novel algorithm based on Radon-Ambiguity Transform (RAT) and Adaptive Signal Decomposition (ASD) is presented for the detection and parameter estimation of multicompo-nent Linear Frequency Modulated (LFM) signals. The key problem lies in the chirplet estimation. Genetic algorithm is employed to search for the optimization parameter of chirplet. High estimation accuracy can be obtained even at low Signal-to-Noisc Ratio(SNR). Finally simulation results are provided to demonstrate the performance of the proposed algorithm.
基金supported by the National Natural Science Foundation of China (Grant No. 61471138, 50909029 and 61531012)Program of International S\&T Cooperation (Grant No. 2013DFR20050)+1 种基金the Defense Industrial Technology Development Program (Grant No. B2420132004)the Acoustic Science and Technology Laboratory (2014)
文摘To improve the identification capability of AP algorithm in time-varying sparse system, we propose a block parallel l_0-SWL-DCD-AP algorithm in this paper. In the proposed algorithm, we first introduce the l_0-norm constraint to promote its application for sparse system. Second, we use the shrinkage denoising method to improve its track ability. Third, we adopt the widely linear processing to take advantage of the non-circular properties of communication signals. Last, to reduce the high computational complexity and make it easy to implemented, we utilize the dichotomous coordinate descent(DCD) iterations and the parallel processing to deal with the tapweight update in the proposed algorithm. To verify the convergence condition of the proposed algorithm, we also analyze its steadystate behavior. Several simulation are done and results show that the proposed algorithm can achieve a faster convergence speed and a lower steady-state misalignment than similar APA-type algorithm. When apply the proposed algorithm in the decision feedback equalizer(DFE), the bite error rate(BER) decreases obviously.
基金supported by Startup Foundation for Phd Research of Henan Normal University(No.5101119170155).
文摘An uncertainty principle(UP),which offers information about a signal and its Fourier transform in the time-frequency plane,is particularly powerful in mathematics,physics and signal processing community.Under the polar coordinate form of quaternion-valued signals,the UP of the two-sided quaternion linear canonical transform(QLCT)is strengthened in terms of covariance.The condition giving rise to the equal relation of the derived result is obtained as well.The novel UP with covariance can be regarded as one in a tighter form related to the QLCT.It states that the product of spreads of a quaternion-valued signal in the spatial domain and the QLCT domain is bounded by a larger lower bound.
基金Project supported by the National Key R&D Program of China(Grant No.2018YFB2002405)the National Natural Science Foundation of China(Grant No.61903013)。
文摘Zero-field single-beam atomic magnetometers with transverse parametric modulation for ultra-weak magnetic field detection have attracted widespread attention recently.In this study,we present a comprehensive response model and propose a modification method of conventional first harmonic response by introducing the second harmonic correction.The proposed modification method gives improvement in dynamic range and reduction of linearity error.Additionally,our modification method shows suppression of response instability caused by optical intensity and frequency fluctuations.An atomic magnetometer with single-beam configuration is built to compare the performance between our proposed method and the conventional method.The results indicate that our method’s magnetic field response signal achieves a 5-fold expansion of dynamic range from 2 nT to 10 nT,with the linearity error decreased from 5%to 1%.Under the fluctuations of 5%for optical intensity and±15 GHz detuning of frequency,the proposed modification method maintains intensityrelated instability less than 1%and frequency-related instability less than 8%while the conventional method suffers 15%and 38%,respectively.Our method is promising for future high-sensitive and long-term stable optically pumped atomic sensors.