All parabolic subgroups and Borel subgroups of PΩ(2m + 1, F) over a linearable field F of characteristic 0 are shown to be complete groups, provided m 〉 3.
A typical example for the algebraic groups is the general linear groups G=GL(n,F), we have studied the structure of such groups and paid special attention to its important substructures, namely the Parabolic subgroups...A typical example for the algebraic groups is the general linear groups G=GL(n,F), we have studied the structure of such groups and paid special attention to its important substructures, namely the Parabolic subgroups. For a given G we computed all the Parabolic subgroups and determined their number, depending on the fact that any finite group has a composition series and the composition factors of a composition series are simple groups which are completely classified, we report here some investigations on the computed Parabolic subgroups. This has been done with the utility of GAP.展开更多
Let G be a finite group,and let V be a completely reducible faithful finite G-module(i.e.,G≤GL(V),where V is a finite vector space which is a direct sum of irreducible G-submodules).It has been known for a long time ...Let G be a finite group,and let V be a completely reducible faithful finite G-module(i.e.,G≤GL(V),where V is a finite vector space which is a direct sum of irreducible G-submodules).It has been known for a long time that if G is abelian,then G has a regular orbit on V.In this paper we show that G has an orbit of size at least|G/G′|on V.This generalizes earlier work of the authors,where the same bound was proved under the additional hypothesis that G is solvable.For completely reducible modules it also strengthens the 1989 result|G/G′|<|V|by Aschbacher and Guralnick.展开更多
Let V be a faithful G-module for a finite group G and let p be a prime dividing IG].An orbit yG for the action of G on V is regular if|v^(G)|=|G:C_(G)(v)]=|G|,and is p-regular if|v^(G)|_(p)=|G:C_(G)(v)|_(p)=|G|_(p).In...Let V be a faithful G-module for a finite group G and let p be a prime dividing IG].An orbit yG for the action of G on V is regular if|v^(G)|=|G:C_(G)(v)]=|G|,and is p-regular if|v^(G)|_(p)=|G:C_(G)(v)|_(p)=|G|_(p).In this note,we study two questions,one by the authors and one by Isaacs,related to the p-regular orbits and regular orbits of the linear group actions.展开更多
1. Introduction Since O’Meara worked out the automorphisms of orthogonal groups Ωn(V) over fields in [4] by using well-known residual space method, many results about the isomorphisms and automorphisms of orthogonal...1. Introduction Since O’Meara worked out the automorphisms of orthogonal groups Ωn(V) over fields in [4] by using well-known residual space method, many results about the isomorphisms and automorphisms of orthogonal groups over integral domains have been achieved. Refer to O’Meara, Hahn for example. B. R. McDonald, in [12], determined the automorphisms of O(V) over local rings with 2 a unit by using involutions.展开更多
Let R and A be commutative rings with identity, and m and n be integers ≥3. Consider when and how an isomorphism E_m(R)E_n(A) can be lifted to an isomorphism between the corresponding Steinberg groups. It was proved ...Let R and A be commutative rings with identity, and m and n be integers ≥3. Consider when and how an isomorphism E_m(R)E_n(A) can be lifted to an isomorphism between the corresponding Steinberg groups. It was proved that, if E_m(R) is isomorphic to E_n(A) then m=n (cf. Ref. [1]). When n≥4, every isomorphism E_n(R)E_n(A) is of the standard type, and it can be naturally and uniquely lifted to an isomorphism from St_n(R) to St_n(A) (cf. Refs. [1] and [2]). However, the case n=3 is different from that n≥4,展开更多
The torsion conjecture says: for any abelian variety A defined over a number field k, the order of the torsion subgroup of A(k) is bounded by a constant C(k,d) which depends only on the number field k and the dim...The torsion conjecture says: for any abelian variety A defined over a number field k, the order of the torsion subgroup of A(k) is bounded by a constant C(k,d) which depends only on the number field k and the dimension d of the abelian variety. The torsion conjecture remains open in general. However, in this paper, a short argument shows that the conjecture is true for more general fields if we consider linear groups instead of abelian varieties. If G is a connected linear algebraic group defined over a field k which is finitely generated over Q,Г is a torsion subgroup of G(k). Then the order of Г is bounded by a constant C'(k, d) which depends only on k and the dimension d of G.展开更多
For any group G, denote byπe(G) the set of orders of elements in G. Given a finite group G, let h(πe (G)) be the number of isomorphism classes of finite groups with the same set πe(G) of element orders. A group G i...For any group G, denote byπe(G) the set of orders of elements in G. Given a finite group G, let h(πe (G)) be the number of isomorphism classes of finite groups with the same set πe(G) of element orders. A group G is called k-recognizable if h(πe(G)) = k <∞, otherwise G is called non-recognizable. Also a 1-recognizable group is called a recognizable (or characterizable) group. In this paper the authors show that the simple groups PSL(3,q), where 3 < q≡±2 (mod 5) and (6, (q-1)/2) = 1, are recognizable.展开更多
Structures of two classes of solvable subgroups in SL(3, C) are given in this paper, and the integrability of the 3-order Fuchsian equation which is integrable in the sense that its monodromy group is solvable is di...Structures of two classes of solvable subgroups in SL(3, C) are given in this paper, and the integrability of the 3-order Fuchsian equation which is integrable in the sense that its monodromy group is solvable is discussed.展开更多
Given a maximal subgroup M of a group G, a θ*-completion C of M is called an s*-completion if either C = G or there exists a subgroup D of G which is not a θ*-completion of M such that D contains C as a maximal subg...Given a maximal subgroup M of a group G, a θ*-completion C of M is called an s*-completion if either C = G or there exists a subgroup D of G which is not a θ*-completion of M such that D contains C as a maximal subgroup. In this paper, we obtain several results on s*-completions which imply G to be solvable or supersolvable.展开更多
In this paper, we generate the wreath product L2 (1 1) wrM12 using only two permutations. Also, we show the structure of some groups containing the wreath product L2(1 1)wrM12. The structure of the groups founded ...In this paper, we generate the wreath product L2 (1 1) wrM12 using only two permutations. Also, we show the structure of some groups containing the wreath product L2(1 1)wrM12. The structure of the groups founded is determined in terms of wreath product (L2 (11)wrM12)wrCt. Some related cases are also included. Also, we will show that S132K+1 and A132K+l can be generated using the wreath product (L2 (1 1)wrM12) wr Ck and a transposition in S132K+1 and an element of order 3 in A132K+l. We will also show that S132K+1 and A132K+1 can be generated using the wreath product L2 (1 1) wrMl2 and an element of order k + 1.展开更多
The paper considers the lattice of fully invariant subgroups of the cotorsion hull ?when a separable primary group T?is an arbitrary direct sum of torsion-complete groups.The investigation of this problem in the case ...The paper considers the lattice of fully invariant subgroups of the cotorsion hull ?when a separable primary group T?is an arbitrary direct sum of torsion-complete groups.The investigation of this problem in the case of a cotorsion hull is important because endomorphisms in this class of groups are completely defined by their action on the torsion part and for mixed groups the ring of endomorphisms is isomorphic to the ring of endomorphisms of the torsion part if and only if the group is a fully invariant subgroup of the cotorsion hull of its torsion part. In the considered case, the cotorsion hull is not fully transitive and hence it is necessary to introduce a new function which differs from an indicator and assigns an infinite matrix to each element of the cotorsion hull. The relation ?difined on the set ?of these matrices is different from the relation proposed by the autor in the countable case and better discribes the lower semilattice. The use of the relation ?essentially simplifies the verification of the required properties. It is proved that the lattice of fully invariant subgroups of the group is isomorphic to the lattice of filters of the lower semilattice.展开更多
Firstly, in the general normed linear space, the concepts of generalized isosceles orthogonal group, generalized Birkhoff orthogonal group, generalized Roberts orthogonal group, strong Birkhoff orthogonal group and ge...Firstly, in the general normed linear space, the concepts of generalized isosceles orthogonal group, generalized Birkhoff orthogonal group, generalized Roberts orthogonal group, strong Birkhoff orthogonal group and generalized orthogonal basis are introduced. Secondly, the conclusion that any two nonzero generalized orthogonal groups must be linearly independent group is proven. And the existence of nonzero generalized orthogonal group and its linear correlation are discussed preliminarily, as well as some related properties of nonempty generalized orthogonal group in specific normed linear space namely the <em>l<sub>p</sub></em> space.展开更多
Let G be a symplectic or orthogonal group defined over a finite field with odd characteristic and let D≤G be a Sylow 2-subgroup.In this paper,we classify the essential 2-subgroups and determine the essential 2-rank o...Let G be a symplectic or orthogonal group defined over a finite field with odd characteristic and let D≤G be a Sylow 2-subgroup.In this paper,we classify the essential 2-subgroups and determine the essential 2-rank of the Frobenius category FD(G).Together with the results of An–Dietrich and Cao–An–Zeng,this completes the work of essential subgroups and essential ranks of classical groups.展开更多
The photo-physical properties of oligo(fluorene-vinylene) functionalized anthracene linear oligomers (An-OFVn (n=1-4)) have been systemically investigated through experimental and theoretical methods. The steady...The photo-physical properties of oligo(fluorene-vinylene) functionalized anthracene linear oligomers (An-OFVn (n=1-4)) have been systemically investigated through experimental and theoretical methods. The steady-state spectral measurement shows that the increasing of fluorene-vinylene (FV) group could lead to the red shift of absorption spectra and restrain the excimer formation between oligomers. Quantum chemical calculations exhibit that the energy levels of HOMO, LUMO, and the band gap gradually converge to a constant in accompany with the increasing of FV unit. Meanwhile, the electronic cloud which distributes on the branch arms, also gradually enhances and makes the absorption spectral shape of oligomers become similar to that of branch arms step by step. The time-resolved fluorescence tests exhibits that the lifetime of excimer emission would be almost invariable after the number of FV group in oligomer is ≥2. In nonlinear optical test, the two-photon photoluminescence efficiency and two-photon absorption cross-section will both gradually enhance and be close to an extremum after the number of FV unit is equal to 4. These results will provide a guideline for the design of novel photo-electronic materials.展开更多
After the classification of flag-transitive linear spaces,attention has now turned to line-transitive linear spaces.Such spaces are first divided into the point-imprimitive and the point-primitive,the first class is u...After the classification of flag-transitive linear spaces,attention has now turned to line-transitive linear spaces.Such spaces are first divided into the point-imprimitive and the point-primitive,the first class is usually easy by the theorem of Delandtsheer and Doyen.The primitive ones are now subdivided,according to the O'Nan-Scotte theorem and some further work by Camina,into the socles which are an elementary abelian or non-abelian simple.In this paper,we consider the latter.Namely,T ≤ G ≤ Aut(T) and G acts line-transitively on finite linear spaces,where T is a non-abelian simple.We obtain some useful lemmas.In particular,we prove that when T is isomorphic to 3D4(q),then T is line-transitive,where q is a power of the prime p.展开更多
Let S be a finite linear space, and let G be a group of automorphisms of S. If G is soluble and line-transitive, then for a given k but a finite number of pairs of ( S, G), S has v= pn points and G≤AΓ L(1,pn).
For a commutative ring with identity, we obtain a complete description of all overgroups of unitary groups U2nR (n ≥ 5), which include symplectic, ordinary orthogonal and standard unitary groups, in linear group GL2nR.
A well-known result for Vilenkin systems is the fact that for all 1 〈 p 〈 oc the n-th partial sums of Fourier series of all functions in the space Lp converge to the function in LP-norm. This statement can not be ge...A well-known result for Vilenkin systems is the fact that for all 1 〈 p 〈 oc the n-th partial sums of Fourier series of all functions in the space Lp converge to the function in LP-norm. This statement can not be generalized to any representative product system on the complete product of finite non-abelian groups, but even then it is true for the complete product of quaternion groups with bounded orders and monomial representative product system ordered in a specific way.展开更多
文摘All parabolic subgroups and Borel subgroups of PΩ(2m + 1, F) over a linearable field F of characteristic 0 are shown to be complete groups, provided m 〉 3.
文摘A typical example for the algebraic groups is the general linear groups G=GL(n,F), we have studied the structure of such groups and paid special attention to its important substructures, namely the Parabolic subgroups. For a given G we computed all the Parabolic subgroups and determined their number, depending on the fact that any finite group has a composition series and the composition factors of a composition series are simple groups which are completely classified, we report here some investigations on the computed Parabolic subgroups. This has been done with the utility of GAP.
基金supported by National Natural Science Foundation of China(Grant No.11671063)a grant from the Simons Foundation(Grant No.280770 to Thomas M.Keller)a grant from the Simons Foundation(Grant No.499532 to Yong Yang)。
文摘Let G be a finite group,and let V be a completely reducible faithful finite G-module(i.e.,G≤GL(V),where V is a finite vector space which is a direct sum of irreducible G-submodules).It has been known for a long time that if G is abelian,then G has a regular orbit on V.In this paper we show that G has an orbit of size at least|G/G′|on V.This generalizes earlier work of the authors,where the same bound was proved under the additional hypothesis that G is solvable.For completely reducible modules it also strengthens the 1989 result|G/G′|<|V|by Aschbacher and Guralnick.
基金supported by NSFC(11671063)a grant from the Simons Foundation(#499532 to Yong Yang)a grant from the Simons Foundation(#280770 to Thomas M.Keller).
文摘Let V be a faithful G-module for a finite group G and let p be a prime dividing IG].An orbit yG for the action of G on V is regular if|v^(G)|=|G:C_(G)(v)]=|G|,and is p-regular if|v^(G)|_(p)=|G:C_(G)(v)|_(p)=|G|_(p).In this note,we study two questions,one by the authors and one by Isaacs,related to the p-regular orbits and regular orbits of the linear group actions.
文摘1. Introduction Since O’Meara worked out the automorphisms of orthogonal groups Ωn(V) over fields in [4] by using well-known residual space method, many results about the isomorphisms and automorphisms of orthogonal groups over integral domains have been achieved. Refer to O’Meara, Hahn for example. B. R. McDonald, in [12], determined the automorphisms of O(V) over local rings with 2 a unit by using involutions.
基金Project supported by the National Natural Science Foundation of China
文摘Let R and A be commutative rings with identity, and m and n be integers ≥3. Consider when and how an isomorphism E_m(R)E_n(A) can be lifted to an isomorphism between the corresponding Steinberg groups. It was proved that, if E_m(R) is isomorphic to E_n(A) then m=n (cf. Ref. [1]). When n≥4, every isomorphism E_n(R)E_n(A) is of the standard type, and it can be naturally and uniquely lifted to an isomorphism from St_n(R) to St_n(A) (cf. Refs. [1] and [2]). However, the case n=3 is different from that n≥4,
基金Tianyuan Mathematics Foundation of NSFC (Grant No.10626050)the Knowledge Innovation Program of the Chinese Academy of Sciences
文摘The torsion conjecture says: for any abelian variety A defined over a number field k, the order of the torsion subgroup of A(k) is bounded by a constant C(k,d) which depends only on the number field k and the dimension d of the abelian variety. The torsion conjecture remains open in general. However, in this paper, a short argument shows that the conjecture is true for more general fields if we consider linear groups instead of abelian varieties. If G is a connected linear algebraic group defined over a field k which is finitely generated over Q,Г is a torsion subgroup of G(k). Then the order of Г is bounded by a constant C'(k, d) which depends only on k and the dimension d of G.
基金This work has been supported by the Research Institute for Fundamental Sciences Tabriz,Iran.
文摘For any group G, denote byπe(G) the set of orders of elements in G. Given a finite group G, let h(πe (G)) be the number of isomorphism classes of finite groups with the same set πe(G) of element orders. A group G is called k-recognizable if h(πe(G)) = k <∞, otherwise G is called non-recognizable. Also a 1-recognizable group is called a recognizable (or characterizable) group. In this paper the authors show that the simple groups PSL(3,q), where 3 < q≡±2 (mod 5) and (6, (q-1)/2) = 1, are recognizable.
文摘Structures of two classes of solvable subgroups in SL(3, C) are given in this paper, and the integrability of the 3-order Fuchsian equation which is integrable in the sense that its monodromy group is solvable is discussed.
文摘Given a maximal subgroup M of a group G, a θ*-completion C of M is called an s*-completion if either C = G or there exists a subgroup D of G which is not a θ*-completion of M such that D contains C as a maximal subgroup. In this paper, we obtain several results on s*-completions which imply G to be solvable or supersolvable.
文摘In this paper, we generate the wreath product L2 (1 1) wrM12 using only two permutations. Also, we show the structure of some groups containing the wreath product L2(1 1)wrM12. The structure of the groups founded is determined in terms of wreath product (L2 (11)wrM12)wrCt. Some related cases are also included. Also, we will show that S132K+1 and A132K+l can be generated using the wreath product (L2 (1 1)wrM12) wr Ck and a transposition in S132K+1 and an element of order 3 in A132K+l. We will also show that S132K+1 and A132K+1 can be generated using the wreath product L2 (1 1) wrMl2 and an element of order k + 1.
文摘The paper considers the lattice of fully invariant subgroups of the cotorsion hull ?when a separable primary group T?is an arbitrary direct sum of torsion-complete groups.The investigation of this problem in the case of a cotorsion hull is important because endomorphisms in this class of groups are completely defined by their action on the torsion part and for mixed groups the ring of endomorphisms is isomorphic to the ring of endomorphisms of the torsion part if and only if the group is a fully invariant subgroup of the cotorsion hull of its torsion part. In the considered case, the cotorsion hull is not fully transitive and hence it is necessary to introduce a new function which differs from an indicator and assigns an infinite matrix to each element of the cotorsion hull. The relation ?difined on the set ?of these matrices is different from the relation proposed by the autor in the countable case and better discribes the lower semilattice. The use of the relation ?essentially simplifies the verification of the required properties. It is proved that the lattice of fully invariant subgroups of the group is isomorphic to the lattice of filters of the lower semilattice.
文摘Firstly, in the general normed linear space, the concepts of generalized isosceles orthogonal group, generalized Birkhoff orthogonal group, generalized Roberts orthogonal group, strong Birkhoff orthogonal group and generalized orthogonal basis are introduced. Secondly, the conclusion that any two nonzero generalized orthogonal groups must be linearly independent group is proven. And the existence of nonzero generalized orthogonal group and its linear correlation are discussed preliminarily, as well as some related properties of nonempty generalized orthogonal group in specific normed linear space namely the <em>l<sub>p</sub></em> space.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11601225,11871360)the Foundation for University Young Key Teacher by He’nan Education Committee (Grant No.2020GGJS079)+2 种基金the China Scholarship Councilsupported by the Marsden Fund (of New Zealand)via award number UOA 1626
文摘Let G be a symplectic or orthogonal group defined over a finite field with odd characteristic and let D≤G be a Sylow 2-subgroup.In this paper,we classify the essential 2-subgroups and determine the essential 2-rank of the Frobenius category FD(G).Together with the results of An–Dietrich and Cao–An–Zeng,this completes the work of essential subgroups and essential ranks of classical groups.
文摘The photo-physical properties of oligo(fluorene-vinylene) functionalized anthracene linear oligomers (An-OFVn (n=1-4)) have been systemically investigated through experimental and theoretical methods. The steady-state spectral measurement shows that the increasing of fluorene-vinylene (FV) group could lead to the red shift of absorption spectra and restrain the excimer formation between oligomers. Quantum chemical calculations exhibit that the energy levels of HOMO, LUMO, and the band gap gradually converge to a constant in accompany with the increasing of FV unit. Meanwhile, the electronic cloud which distributes on the branch arms, also gradually enhances and makes the absorption spectral shape of oligomers become similar to that of branch arms step by step. The time-resolved fluorescence tests exhibits that the lifetime of excimer emission would be almost invariable after the number of FV group in oligomer is ≥2. In nonlinear optical test, the two-photon photoluminescence efficiency and two-photon absorption cross-section will both gradually enhance and be close to an extremum after the number of FV unit is equal to 4. These results will provide a guideline for the design of novel photo-electronic materials.
基金This work was supported by the National Natural Science Foundation of China (Grant No.10471152).
文摘After the classification of flag-transitive linear spaces,attention has now turned to line-transitive linear spaces.Such spaces are first divided into the point-imprimitive and the point-primitive,the first class is usually easy by the theorem of Delandtsheer and Doyen.The primitive ones are now subdivided,according to the O'Nan-Scotte theorem and some further work by Camina,into the socles which are an elementary abelian or non-abelian simple.In this paper,we consider the latter.Namely,T ≤ G ≤ Aut(T) and G acts line-transitively on finite linear spaces,where T is a non-abelian simple.We obtain some useful lemmas.In particular,we prove that when T is isomorphic to 3D4(q),then T is line-transitive,where q is a power of the prime p.
文摘Let S be a finite linear space, and let G be a group of automorphisms of S. If G is soluble and line-transitive, then for a given k but a finite number of pairs of ( S, G), S has v= pn points and G≤AΓ L(1,pn).
基金supported by the National Natural Science Foundation(Grant No.10571033)the Research Fund for the Doctoral of Higher Education of China(Grant No.20040213006)Cultivation Fund of the Key Scientific and Technical Innovation Project Ministry of Education of China(Grant No.704004).
文摘For a commutative ring with identity, we obtain a complete description of all overgroups of unitary groups U2nR (n ≥ 5), which include symplectic, ordinary orthogonal and standard unitary groups, in linear group GL2nR.
基金Supported by project TAMOP-4.2.2.A-11/1/KONV-2012-0051
文摘A well-known result for Vilenkin systems is the fact that for all 1 〈 p 〈 oc the n-th partial sums of Fourier series of all functions in the space Lp converge to the function in LP-norm. This statement can not be generalized to any representative product system on the complete product of finite non-abelian groups, but even then it is true for the complete product of quaternion groups with bounded orders and monomial representative product system ordered in a specific way.