This paper addresses the problem of event-triggered finite-time H<sub>∞</sub> filter design for a class of discrete-time nonlinear stochastic systems with exogenous disturbances. The stochastic Lyapunov-K...This paper addresses the problem of event-triggered finite-time H<sub>∞</sub> filter design for a class of discrete-time nonlinear stochastic systems with exogenous disturbances. The stochastic Lyapunov-Krasoviskii functional method is adopted to design a filter such that the filtering error system is stochastic finite-time stable (SFTS) and preserves a prescribed performance level according to the pre-defined event-triggered criteria. Based on stochastic differential equations theory, some sufficient conditions for the existence of H<sub>∞</sub> filter are obtained for the suggested system by employing linear matrix inequality technique. Finally, the desired H<sub>∞</sub> filter gain matrices can be expressed in an explicit form.展开更多
This paper addresses the problem of the fuzzy H ∞state feedback control for a class of uncertain nonlinear systems with time delay. The Takagi Sugeno (T S) mo del with time delay and parameter uncertainties is ...This paper addresses the problem of the fuzzy H ∞state feedback control for a class of uncertain nonlinear systems with time delay. The Takagi Sugeno (T S) mo del with time delay and parameter uncertainties is adopted for modeling of nonlinear system. The systematic design procedure for the fuzzy robust controller based on linear matrix inequality (LMI) is given. Some sufficient conditions are derived for the existence of fuzzy H ∞ state feedback controllers such that the closed loop system is asymptotically stable and the effect of the disturbance input on controlled output is reduced to a prescribed level. An example is given to demonstrate the effectiveness of the proposed method.展开更多
In order to overcome data-quantization, networked-induced delay, network packet dropouts and wrong sequences in the nonlinear networked control system, a novel nonlinear networked control system model is built by the ...In order to overcome data-quantization, networked-induced delay, network packet dropouts and wrong sequences in the nonlinear networked control system, a novel nonlinear networked control system model is built by the T-S fuzzy method. Two time-varying quantizers are added in the model. The key analysis steps in the method are to construct an improved interval-delay-dependent Lyapunov functional and to introduce the free-weighting matrix. By making use of the parallel distributed compensation technology and the convexity of the matrix function, the improved criteria of the stabilization and stability are obtained. Simulation experiments show that the parameters of the controllers and quantizers satisfying a certain performance can be obtained by solving a set of LMIs. The application of the nonlinear mass-spring system is provided to show that the proposed method is effective.展开更多
The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for...The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for the nominal discrete singular delay systems to be regular, causal and stable by employing the linear matrix inequality (LMI) approach. It is shown that the newly proposed criterion can provide less conservative results than some existing ones. Then, with this criterion, the problems of robust stability and robust stabilization for uncertain discrete singular delay systems are solved, and the delay-dependent LMI conditions are obtained. Finally, numerical examples are given to illustrate the effectiveness of the proposed approach.展开更多
A deky-dependent H-infinity control for descriptor systems with a state-delayis investigated. The purpose of the problem is to design a linear memoryless state-feedbackcontroller such that the resulting closed-loop sy...A deky-dependent H-infinity control for descriptor systems with a state-delayis investigated. The purpose of the problem is to design a linear memoryless state-feedbackcontroller such that the resulting closed-loop system is regular, impulse free and stable with anH-infinity norm bound. Firstly, a deky-dependent bounded real lemma(BRL) of the time-deky descriptorsystems is presented in terms of linear matrix inequalities(LMIs) by using a descriptor modeltransformation of the system and by taking a new Lyapunov-Krasovsii functional. The introducedfunctional does not require bounding for cross terms, so it has less conservation. Secondly, withthe help of the obtained bounded real lemma, a sufficient condition for the existence of a newdeky-dependent H-infinity state-feedback controller is shown in terms of nonlinear matrixinequalities and the solvability of the problem can be obtained by using an iterative algorithminvolving convex optimization. Finally, numerical examples are given to demonstrate theeffectiveness of the new method presented.展开更多
In this paper, we consider the problem of robust stability for a class of linear systems with interval time-varying delay under nonlinear perturbations using Lyapunov-Krasovskii (LK) functional approach. By partitio...In this paper, we consider the problem of robust stability for a class of linear systems with interval time-varying delay under nonlinear perturbations using Lyapunov-Krasovskii (LK) functional approach. By partitioning the delay-interval into two segments of equal length, and evaluating the time-derivative of a candidate LK functional in each segment of the delay-interval, a less conservative delay-dependent stability criterion is developed to compute the maximum allowable bound for the delay-range within which the system under consideration remains asymptotically stable. In addition to the delay-bi-segmentation analysis procedure, the reduction in conservatism of the proposed delay-dependent stability criterion over recently reported results is also attributed to the fact that the time-derivative of the LK functional is bounded tightly using a newly proposed bounding condition without neglecting any useful terms in the delay-dependent stability analysis. The analysis, subsequently, yields a stable condition in convex linear matrix inequality (LMI) framework that can be solved non-conservatively at boundary conditions using standard numerical packages. Furthermore, as the number of decision variables involved in the proposed stability criterion is less, the criterion is computationally more effective. The effectiveness of the proposed stability criterion is validated through some standard numerical examples.展开更多
This paper addresses the robust admissibility problem in singular fractional-order continuous time systems. It is based on new admissibility conditions of singular fractional-order systems expressed in a set of strict...This paper addresses the robust admissibility problem in singular fractional-order continuous time systems. It is based on new admissibility conditions of singular fractional-order systems expressed in a set of strict linear matrix inequalities(LMIs). Then, a static output feedback controller is designed for the uncertain closed-loop system to be admissible. Numerical examples are given to illustrate the proposed methods.展开更多
This paper proposes a new method for model predictive control (MPC) of nonlinear systems to calculate stability region and feasible initial control profile/sequence, which are important to the implementations of MPC...This paper proposes a new method for model predictive control (MPC) of nonlinear systems to calculate stability region and feasible initial control profile/sequence, which are important to the implementations of MPC. Different from many existing methods, this paper distinguishes stability region from conservative terminal region. With global linearization, linear differential inclusion (LDI) and linear matrix inequality (LMI) techniques, a nonlinear system is transformed into a convex set of linear systems, and then the vertices of the set are used off-line to design the controller, to estimate stability region, and also to determine a feasible initial control profile/sequence. The advantages of the proposed method are demonstrated by simulation study.展开更多
In this paper, we study the consensus problem for a class of linear multi-agent systems(MASs) with consideration of input saturation under the self-triggered mechanism. In the context of discrete-time systems, a self-...In this paper, we study the consensus problem for a class of linear multi-agent systems(MASs) with consideration of input saturation under the self-triggered mechanism. In the context of discrete-time systems, a self-triggered strategy is developed to determine the time interval between the adjacent triggers. The triggering condition is designed by using the current sampled consensus error. Furthermore, the consensus control protocol is designed by means of a state feedback approach. It is shown that the considered multi-agent systems can reach consensus with the presented algorithm. Some sufficient conditions are proposed in the form of linear matrix inequalities(LMIs) to show the positively invariant property of the domain of attraction(DOA). Moreover, some sufficient conditions of controller synthesis are provided to enlarge the volume of the DOA and obtain the control gain matrix. A numerical example is simulated to demonstrate the effectiveness of the theoretical analysis results.展开更多
A new proportional-integral (PI) sliding surface is designed for a class of uncertain nonlinear state-delayed systems. Based on this, an adaptive sliding mode controller (ASMC) is synthesized, which guarantees the...A new proportional-integral (PI) sliding surface is designed for a class of uncertain nonlinear state-delayed systems. Based on this, an adaptive sliding mode controller (ASMC) is synthesized, which guarantees the occurrence of sliding mode even when the system is undergoing parameter uncertainties and external disturbance. The resulting sliding mode has the same order as the original system, so that it becomes easy to solve the H∞ control problem by designing a memoryless H∞ state feedback controller. A delay-dependent sufficient condition is proposed in terms of linear matrix inequalities (LMIs), which guarantees the sliding mode robust asymptotically stable and has a noise attenuation level γ in an H∞ sense. The admissible state feedback controller can be found by solving a sequential minimization problem subject to LMI constraints by applying the cone complementary linearization method. This design scheme combines the strong robustness of the sliding mode control with the H∞ norm performance. A numerical example is given to illustrate the effectiveness of the proposed scheme.展开更多
The design of a functional observer and reduced-order observer with internal delay for linear singular timedelay systems with unknown inputs is discussed. The sufficient conditions of the existence of observers, which...The design of a functional observer and reduced-order observer with internal delay for linear singular timedelay systems with unknown inputs is discussed. The sufficient conditions of the existence of observers, which are normal linear time-delay systems, and the corresponding design steps are presented via linear matrix inequality(LMI). Moreover, the observer-based feedback stabilizing controller is obtained. Three examples are given to show the effectiveness of the proposed methods.展开更多
An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is pre...An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is presented. In this approach, the minimization problem of the “worst-case” objective function is converted into the linear objective minimization problem in- volving linear matrix inequalities (LMIs) constraints. The state feedback control law is obtained by solving convex optimization of a set of LMIs. Sufficient condition for stability and a new upper bound on robust performance index are given for these kinds of uncertain fuzzy systems with state time-delay. Simulation results of CSTR process show that the proposed robust predictive control approach is effective and feasible.展开更多
文摘This paper addresses the problem of event-triggered finite-time H<sub>∞</sub> filter design for a class of discrete-time nonlinear stochastic systems with exogenous disturbances. The stochastic Lyapunov-Krasoviskii functional method is adopted to design a filter such that the filtering error system is stochastic finite-time stable (SFTS) and preserves a prescribed performance level according to the pre-defined event-triggered criteria. Based on stochastic differential equations theory, some sufficient conditions for the existence of H<sub>∞</sub> filter are obtained for the suggested system by employing linear matrix inequality technique. Finally, the desired H<sub>∞</sub> filter gain matrices can be expressed in an explicit form.
文摘This paper addresses the problem of the fuzzy H ∞state feedback control for a class of uncertain nonlinear systems with time delay. The Takagi Sugeno (T S) mo del with time delay and parameter uncertainties is adopted for modeling of nonlinear system. The systematic design procedure for the fuzzy robust controller based on linear matrix inequality (LMI) is given. Some sufficient conditions are derived for the existence of fuzzy H ∞ state feedback controllers such that the closed loop system is asymptotically stable and the effect of the disturbance input on controlled output is reduced to a prescribed level. An example is given to demonstrate the effectiveness of the proposed method.
基金The National Natural Science Foundation of China(No.60474049,60835001)Specialized Research Fund for Doctoral Program of Higher Education(No.20090092120027)
文摘In order to overcome data-quantization, networked-induced delay, network packet dropouts and wrong sequences in the nonlinear networked control system, a novel nonlinear networked control system model is built by the T-S fuzzy method. Two time-varying quantizers are added in the model. The key analysis steps in the method are to construct an improved interval-delay-dependent Lyapunov functional and to introduce the free-weighting matrix. By making use of the parallel distributed compensation technology and the convexity of the matrix function, the improved criteria of the stabilization and stability are obtained. Simulation experiments show that the parameters of the controllers and quantizers satisfying a certain performance can be obtained by solving a set of LMIs. The application of the nonlinear mass-spring system is provided to show that the proposed method is effective.
基金supported by Research Foundation of Education Bureau of Shannxi Province, PRC(No.2010JK400)
文摘The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for the nominal discrete singular delay systems to be regular, causal and stable by employing the linear matrix inequality (LMI) approach. It is shown that the newly proposed criterion can provide less conservative results than some existing ones. Then, with this criterion, the problems of robust stability and robust stabilization for uncertain discrete singular delay systems are solved, and the delay-dependent LMI conditions are obtained. Finally, numerical examples are given to illustrate the effectiveness of the proposed approach.
文摘A deky-dependent H-infinity control for descriptor systems with a state-delayis investigated. The purpose of the problem is to design a linear memoryless state-feedbackcontroller such that the resulting closed-loop system is regular, impulse free and stable with anH-infinity norm bound. Firstly, a deky-dependent bounded real lemma(BRL) of the time-deky descriptorsystems is presented in terms of linear matrix inequalities(LMIs) by using a descriptor modeltransformation of the system and by taking a new Lyapunov-Krasovsii functional. The introducedfunctional does not require bounding for cross terms, so it has less conservation. Secondly, withthe help of the obtained bounded real lemma, a sufficient condition for the existence of a newdeky-dependent H-infinity state-feedback controller is shown in terms of nonlinear matrixinequalities and the solvability of the problem can be obtained by using an iterative algorithminvolving convex optimization. Finally, numerical examples are given to demonstrate theeffectiveness of the new method presented.
文摘In this paper, we consider the problem of robust stability for a class of linear systems with interval time-varying delay under nonlinear perturbations using Lyapunov-Krasovskii (LK) functional approach. By partitioning the delay-interval into two segments of equal length, and evaluating the time-derivative of a candidate LK functional in each segment of the delay-interval, a less conservative delay-dependent stability criterion is developed to compute the maximum allowable bound for the delay-range within which the system under consideration remains asymptotically stable. In addition to the delay-bi-segmentation analysis procedure, the reduction in conservatism of the proposed delay-dependent stability criterion over recently reported results is also attributed to the fact that the time-derivative of the LK functional is bounded tightly using a newly proposed bounding condition without neglecting any useful terms in the delay-dependent stability analysis. The analysis, subsequently, yields a stable condition in convex linear matrix inequality (LMI) framework that can be solved non-conservatively at boundary conditions using standard numerical packages. Furthermore, as the number of decision variables involved in the proposed stability criterion is less, the criterion is computationally more effective. The effectiveness of the proposed stability criterion is validated through some standard numerical examples.
基金Supported by the State Key Program of National Natural Science of China (60534010), National Basic Research Program of China (973 Program)(2009CB320604), National Natural Science Foundation of China (60674021), the Funds for Creative Research Groups of China (60521003), the 111 Project(B08015), and the Funds of Ph.D. Program of Ministry of Eduction, China (20060145019).
文摘This paper addresses the robust admissibility problem in singular fractional-order continuous time systems. It is based on new admissibility conditions of singular fractional-order systems expressed in a set of strict linear matrix inequalities(LMIs). Then, a static output feedback controller is designed for the uncertain closed-loop system to be admissible. Numerical examples are given to illustrate the proposed methods.
基金This work was supported by an Overseas Research Students Award to Xiao-Bing Hu.
文摘This paper proposes a new method for model predictive control (MPC) of nonlinear systems to calculate stability region and feasible initial control profile/sequence, which are important to the implementations of MPC. Different from many existing methods, this paper distinguishes stability region from conservative terminal region. With global linearization, linear differential inclusion (LDI) and linear matrix inequality (LMI) techniques, a nonlinear system is transformed into a convex set of linear systems, and then the vertices of the set are used off-line to design the controller, to estimate stability region, and also to determine a feasible initial control profile/sequence. The advantages of the proposed method are demonstrated by simulation study.
基金supported by the National Natural Science Foundation of China(61921004,61520106009,U1713209,61973074)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘In this paper, we study the consensus problem for a class of linear multi-agent systems(MASs) with consideration of input saturation under the self-triggered mechanism. In the context of discrete-time systems, a self-triggered strategy is developed to determine the time interval between the adjacent triggers. The triggering condition is designed by using the current sampled consensus error. Furthermore, the consensus control protocol is designed by means of a state feedback approach. It is shown that the considered multi-agent systems can reach consensus with the presented algorithm. Some sufficient conditions are proposed in the form of linear matrix inequalities(LMIs) to show the positively invariant property of the domain of attraction(DOA). Moreover, some sufficient conditions of controller synthesis are provided to enlarge the volume of the DOA and obtain the control gain matrix. A numerical example is simulated to demonstrate the effectiveness of the theoretical analysis results.
基金This project was supported by the National Natural Science Foundation of China(69874008)
文摘A new proportional-integral (PI) sliding surface is designed for a class of uncertain nonlinear state-delayed systems. Based on this, an adaptive sliding mode controller (ASMC) is synthesized, which guarantees the occurrence of sliding mode even when the system is undergoing parameter uncertainties and external disturbance. The resulting sliding mode has the same order as the original system, so that it becomes easy to solve the H∞ control problem by designing a memoryless H∞ state feedback controller. A delay-dependent sufficient condition is proposed in terms of linear matrix inequalities (LMIs), which guarantees the sliding mode robust asymptotically stable and has a noise attenuation level γ in an H∞ sense. The admissible state feedback controller can be found by solving a sequential minimization problem subject to LMI constraints by applying the cone complementary linearization method. This design scheme combines the strong robustness of the sliding mode control with the H∞ norm performance. A numerical example is given to illustrate the effectiveness of the proposed scheme.
基金the National Natural Science Foundation of China (No. 50477042)the Ph.D. Programs Foundation of Ministry of Education of China (No. 20040422052 )the National Natural Science Foundation of Shandong Province (No.Z2004G04)
文摘The design of a functional observer and reduced-order observer with internal delay for linear singular timedelay systems with unknown inputs is discussed. The sufficient conditions of the existence of observers, which are normal linear time-delay systems, and the corresponding design steps are presented via linear matrix inequality(LMI). Moreover, the observer-based feedback stabilizing controller is obtained. Three examples are given to show the effectiveness of the proposed methods.
基金Project (No. 60421002) supported by the National Natural ScienceFoundation of China
文摘An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is presented. In this approach, the minimization problem of the “worst-case” objective function is converted into the linear objective minimization problem in- volving linear matrix inequalities (LMIs) constraints. The state feedback control law is obtained by solving convex optimization of a set of LMIs. Sufficient condition for stability and a new upper bound on robust performance index are given for these kinds of uncertain fuzzy systems with state time-delay. Simulation results of CSTR process show that the proposed robust predictive control approach is effective and feasible.
基金Supported by National Basic Research Program of China (973 Program) (2009CB320604), State Key Program of National Natural Science Foundation of China (60534010), National Natural Science Foundation of China (60674021), Funds for Creative Research Groups of China (60821063), the 111 Project (B08015), and the Funds of Doctoral Program of Ministry of Education of China (20060145019)