Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suf...Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.展开更多
This paper proposes a new rotary flux switching transverse flux machine with the ability of linear motion(FSTFMaLM),in which both the stator and the rotor cores are made by using soft magnetic composite(SMC)materials....This paper proposes a new rotary flux switching transverse flux machine with the ability of linear motion(FSTFMaLM),in which both the stator and the rotor cores are made by using soft magnetic composite(SMC)materials.With the special design pattern,for the rotary motion model,the proposed machine can combine both the advantages of the flux switching permanent magnet machine(FSPMM)and the transverse flux machine(TFM).It can output with relatively high torque density,and as there is no windings or the magnets on the rotor cores,the proposed machine can operate in the high speed region to improve the output power.With the adoption of the SMC materials,the manufacturing of this machine can be quite easy.By stacking the rotor core together and prolong it with the determined length in the axial direction,in addition with the special control algorithm,the proposed machine can have the ability of the linear motion.In this paper,the operation principle of this machine has been explained and the design methods are also presented.To seek the better performance,the main dimension of the machine is optimized,and for the performance evaluation,the finite element method(FEM)is adopted.The proposed machine can be used for the electric driving systems,robotic systems or other applications where the linear motion ability is required.展开更多
Generally,due to the limitation of the dimension of the array aperture,linear arrays cannot achieve two-dimensional(2D)direction of arrival(DOA)estimation.But the emergence of array motion provides a chance for that.I...Generally,due to the limitation of the dimension of the array aperture,linear arrays cannot achieve two-dimensional(2D)direction of arrival(DOA)estimation.But the emergence of array motion provides a chance for that.In this paper,a generalized motion scheme and a novel method of 2D DOA estimation are proposed by exploring the linear array motion.To be specific,the linear arrays are controlled to move along an arbitrary direction at a constant velocity and snap per fixed time delay.All the received signals are processed to synthesize the comprehensive observation vector for an extended 2D virtual aperture.Subsequently,since most of 2D DOA estimation methods are not universal to our proposed motion scheme and the reduced-dimensional(RD)method fails to handle the case of the coupled parameters,a decoupled reduced-complexity multiple signals classification(DRC MUSIC)algorithm is designed specifically.Simulation results demonstrate that:a)our proposed scheme can achieve underdetermined 2D DOA estimation just by the linear arrays;b)our designed DRC MUSIC algorithm has the good properties of high accuracy and low complexity;c)our proposed motion scheme with the DRC method has better universality in the motion direction.展开更多
Existing frequency-domain-oriented methods of parameter identification for uniform linear motion blur (ULMB) images usually dealt with special scenarios. For example, blur-kernel directions were horizontal or vertic...Existing frequency-domain-oriented methods of parameter identification for uniform linear motion blur (ULMB) images usually dealt with special scenarios. For example, blur-kernel directions were horizontal or vertical, or degraded images were of foursquare dimension. This excludes those identification methods from being applied to real images, especially to estimate undersized or oversized blur kernels. Pointing against the limitations of blur-kernel identifications, discrete Fourier transform (DFT)-based blur-kernel estimation methods are proposed in this paper. We analyze in depth the Fourier frequency response of generalized ULMB kernels, demonstrate in detail its related phase form and properties thereof, and put forward the concept of quasi-cepstrum. On this basis, methods of estimating ULMB-kernel parameters using amplitude spectrum and quasi-cepstrum are presented, respectively. The quasi-cepstrum-oriented approach increases the identifiable blur-kernel length, up to a maximum of half the diagonal length of the image. Meanwhile, directing toward the image of undersized ULMB, an improved method based on quasi-cepstrum is presented, which ameliorates the identification quality of undersized ULMB kernels. The quasi-cepstrum-oriented approach popularizes and applies the simulation-experiment- focused DFT theory to the estimation of real ULMB images. Compared against the amplitude-spectrum-oriented method, the quasi-cepstrum-oriented approach is more convenient and robust, with lower identification errors and of better noiseimmunity.展开更多
This paper proposes a new method for measurement of the roll error motion of a slide table in a precision linear slide. The proposed method utilizes a pair of clinometers in the production process of a precision linea...This paper proposes a new method for measurement of the roll error motion of a slide table in a precision linear slide. The proposed method utilizes a pair of clinometers in the production process of a precision linear slide, where the roll error motion measurement will be carried out repeatedly to confirm whether the surface form errors of slide guideways in the linear slide are su ciently corrected by hand scraping process. In the proposed method, one of the clinometers is mounted on the slide table, while the other is placed on a vibration isolation table, on which the precision linear slide is mounted, so that influences of external disturbances can be cancelled. An experimental setup is built on a vibration isolation table, and some experiments are carried out to verify the feasibility of the proposed method.展开更多
The equilibrium manifold linearization model of nonlinear shock motion is of higher accuracy and lower complexity over other models such as the small perturbation model and the piecewise-linear model. This paper analy...The equilibrium manifold linearization model of nonlinear shock motion is of higher accuracy and lower complexity over other models such as the small perturbation model and the piecewise-linear model. This paper analyzes the physical significance of the equilibrium manifold linearization model, and the self-feedback mechanism of shock motion is revealed. This helps to describe the stability and dynamics of shock motion. Based on the model, the paper puts forwards a gain scheduling control method for nonlinear shock motion. Simulation has shown the validity of the control scheme.展开更多
A virtual sieving experimental simulation system was built using physical simulation principles.The effects of vibration frequency and amplitude,the inclination angle of the screen-deck and the vibration direction ang...A virtual sieving experimental simulation system was built using physical simulation principles.The effects of vibration frequency and amplitude,the inclination angle of the screen-deck and the vibration direction angle of screen on single particle kinematics were predicted.Properties such as the average velocity and the average throw height were studied.The results show that the amplitude and the angle of vibration have a great effect on particle average velocity and average height.The vibration frequency and the screen-deck inclination angle appear to have little influence on these responses.For materials that are difficult to screen the vibration frequency and amplitude,the screen-deck inclination angle and the vibration angle should be set to 14 Hz,6.6 mm,6° and 40°,respectively,to obtain optimal particle kinematics.A screening process can be simulated reliably by means of a virtual experiment and these results provide references for both screening theory research and sieving practice.展开更多
A phenomenological model for predicting the vortex-induced motion (VIM) of a single-column platform with non- linear stiffness has been proposed. The VIM model is based on the couple of the Duffing-van der Pol oscilla...A phenomenological model for predicting the vortex-induced motion (VIM) of a single-column platform with non- linear stiffness has been proposed. The VIM model is based on the couple of the Duffing-van der Pol oscillators and the motion equations with non-linear terms. The model with liner stiffness is presented for comparison and their results are compared with the experiments in order to calibrate the model. The computed results show that the predicted VIM amplitudes and periods of oscillation are in qualitative agreements with the experimental data. Compared with the results with linear stiffness, it is found that the application of non-linear stiffness causes the significant reductions in the in-line and transverse motion amplitudes. Under the non-linear stiffness constraint, the lock-in behavior is still identified at 8<Ur<15, and the trajectories of the VIM on the xy plane with eight-figure patterns are maintained. The results with different non-linear geometrically parameters show that both in-line and transverse non-linear characteristics can significantly affect the predict in-line and transverse motion amplitudes. Furthermore, the computed results for different aspect ratios indicate that the in-line and transverse motion amplitudes increase with the growth of aspect ratio, and the range of lock-in region is enlarged for the large aspect ratio.展开更多
A new type of linear ultrasonic motor with two degrees of freedom (DOF) motion is presented. The concept of the new typical motor is based on the combination of a longitudinal and two bending modes. The construction a...A new type of linear ultrasonic motor with two degrees of freedom (DOF) motion is presented. The concept of the new typical motor is based on the combination of a longitudinal and two bending modes. The construction and the operational principle of motor are described, and the elliptical motion of the driving point of the actuator is proved. Meanwhile, a prototype linear motor is designed by using the finite element method (FEM) and is constructed for experiments. The vibration modes are tested with the laser doppler vibrometer (PSV-300F), and the experimental results prove that the design requirements on the mode shape of the actuator and nature frequency are satisfied. The test run of the motor indicates that the operational principle of the motor and the design results are correct, and the output properties are also tested.展开更多
A two-degree-of-freedom(2-DOF) linear ultrasonic motor (USM) consists of a cylinder-shaped stator and a slider. Two bending vibration modes with orthogonality and one longitudinal vibration mode are excited in the...A two-degree-of-freedom(2-DOF) linear ultrasonic motor (USM) consists of a cylinder-shaped stator and a slider. Two bending vibration modes with orthogonality and one longitudinal vibration mode are excited in the stator by three groups of piezoelectric ceramic elements. The combinations of any one bending mode and the longitudinal mode mentioned above push the slider to move linearly in direction x or y. Some key issues for improving the motor output properties and efficiency are given. They include selection of the vibration modes, consistency of the modal frequencies, placement of the piezoelectric ceramic elements and the supporting plane, setting of pre-pressure, and influence of interfering modes.展开更多
The correlation between ground motion intensity measures (IM) and single-degree-of-freedom (SDOF) deformation demands is described in this study. Peak ground acceleration (APG), peak ground velocity (VPG), pea...The correlation between ground motion intensity measures (IM) and single-degree-of-freedom (SDOF) deformation demands is described in this study. Peak ground acceleration (APG), peak ground velocity (VPG), peak ground displacement (DPG), spectral acceleration at the first-mode period of vibration [As(T1)] and ratio of VPG to APG are used as IM parameters, and the correlation is characterized by correlation coefficients p. The numerical results obtained by nonlinear dynamic analyses have shown good correlation between As(T1) or VPG and deformation demands. Furthermore, the effect of As(T1) and VPG as IM on the dispersion of the mean value of deformation demands is also investigated for SDOF systems with three different periods T=0.3 s, 1.0 s, 3.0 s respectively.展开更多
Linear switched reluctance motor(LSRM)and its applications in different industries have been an interesting research topic for the past few years.LSRMs have proved to be a suitable alternative in a variety of applicat...Linear switched reluctance motor(LSRM)and its applications in different industries have been an interesting research topic for the past few years.LSRMs have proved to be a suitable alternative in a variety of applications requiring linear motion.However,its use is not that popular which instigated an active interest in the evolution of newer LSRM configurations.Enhancement in its propulsion force along with the reduction in force ripples,weight,acoustic noise,and vibration have been the main objectives in recently proposed LSRM designs.In this paper,recently proposed LSRM designs are reviewed and analyzed.The paper presents a one-stop introduction and a complete update to the designs,both in terms of qualitative and quantitative parameters.In addition,it takes into account the challenges in the implementation of these designs.Based on a detailed comparison of these designs as presented in this paper,an appropriate design can be chosen for a given application.展开更多
The nonlinear dynamic characteristics of a pile embedded in a rock were investigated. Suppose that both the materials of the pile and the soil around the pile obey nonlinear elastic and linear viscoelastic constitutiv...The nonlinear dynamic characteristics of a pile embedded in a rock were investigated. Suppose that both the materials of the pile and the soil around the pile obey nonlinear elastic and linear viscoelastic constitutive relations. The nonlinear partial differential equation governing the dynamic characteristics of the pile was first derived. The Galerkin method was used to simplify the equation and to obtain a nonlinear ordinary differential equation. The methods in nonlinear dynamics were employed to solve the simplified dynamical system, and the time-path curves, phase-trajectory diagrams, power spectrum, Poincare sections and bifurcation and chaos diagrams of the motion of the pile were obtained. The effects of parameters on the dynamic characteristics of the system were also considered in detail.展开更多
One of the requirements for modem production machine is versatility and easy reconfiguration to produce new products. The production machines use fixed gearing and mechanical cams in history. The cams were used for sp...One of the requirements for modem production machine is versatility and easy reconfiguration to produce new products. The production machines use fixed gearing and mechanical cams in history. The cams were used for specific stokes and cam switches were used for commissioning of technological process. This solution has disadvantages in lower production speed and no flexibility of production. This article summaries practical steps for machine modernization and highlight practical problems in modernization of older production machine. The electronic cam with direct linear drive was used for traversal motion with high peak acceleration. This paper discusses cam stoke curve design, redesign and fitting.展开更多
This paper presents a novel idea of utilizing the reactional torque of the conventional electric motor as a linear output for propulsion in addition to the conventional torque output of the rotor. The idea is demonstr...This paper presents a novel idea of utilizing the reactional torque of the conventional electric motor as a linear output for propulsion in addition to the conventional torque output of the rotor. The idea is demonstrated by a theoretical proposal of linearizing the stator of one of the most used motors </span><span style="font-family:Verdana;">in Electrical Vehicles and Hybrid Vehicles</span><span style="font-family:""><span style="font-family:Verdana;">. The proposed Linear Stator Motor is a </span><span style="font-family:Verdana;">simple modification without involving any functional change of the conventional motor. Though theoretical, the indicated possible input </span><span style="font-family:Verdana;">energy saving of more than 75% as compared to the conventional motor is no surprise, as by linearizing the stator, an almost equal linear propulsion output is added to the conventional rotor output. In addition to this remarkable saving in input energy, the proposed Linear Stator Motor that suits all type</span></span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> of vehicle</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;">, can maintain propulsion without the need for a mechanical transmission system. Also, in </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">case of watercraft and aircraft vehicles, no external mechanical propulsion drive system is required. It is just an internal force that can push the vehicle forward, backward</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> or laterally, while the conventional rotor output can be utilized for energy recovery by driving a DC generator.展开更多
This paper proposes a new concept of an actively-controlled wave energy converter for suppressing the pitch and roll motions of floating offshore wind turbines.The wave energy converter consists of several floating bo...This paper proposes a new concept of an actively-controlled wave energy converter for suppressing the pitch and roll motions of floating offshore wind turbines.The wave energy converter consists of several floating bodies that receive the wave energy,actuators that convert the wave energy into electrical energy and generate the mechanical forces,and rigid bars that connect the floating bodies and the wind turbine platform and deliver the actuator forces to the platform.The rotational torques that are required to minimize the platform pitch and roll motions are determined using a linear quadratic regulator.The torques determined in this manner are realized through the actuator forces that maximize the wave power capture as well.The performance of the proposed wave energy converter in simultaneously suppressing the platform pitch and roll motions and extracting the wave energy is validated through simulations.展开更多
基金National Natural Science Foundation of China(61973037)National 173 Program Project(2019-JCJQ-ZD-324)。
文摘Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.
基金This work was supported in part by the National Natural Science Foundation of China under project 51877065Hebei Province Education Department Youth Talent Leading Project under grant BJ2018037.
文摘This paper proposes a new rotary flux switching transverse flux machine with the ability of linear motion(FSTFMaLM),in which both the stator and the rotor cores are made by using soft magnetic composite(SMC)materials.With the special design pattern,for the rotary motion model,the proposed machine can combine both the advantages of the flux switching permanent magnet machine(FSPMM)and the transverse flux machine(TFM).It can output with relatively high torque density,and as there is no windings or the magnets on the rotor cores,the proposed machine can operate in the high speed region to improve the output power.With the adoption of the SMC materials,the manufacturing of this machine can be quite easy.By stacking the rotor core together and prolong it with the determined length in the axial direction,in addition with the special control algorithm,the proposed machine can have the ability of the linear motion.In this paper,the operation principle of this machine has been explained and the design methods are also presented.To seek the better performance,the main dimension of the machine is optimized,and for the performance evaluation,the finite element method(FEM)is adopted.The proposed machine can be used for the electric driving systems,robotic systems or other applications where the linear motion ability is required.
基金This work was supported in part by the Key R&D Program of Shandong Province,China(No.2020CXGC010109)in part by the Beijing Municipal Science and Technology Project(Z181100003218015).
文摘Generally,due to the limitation of the dimension of the array aperture,linear arrays cannot achieve two-dimensional(2D)direction of arrival(DOA)estimation.But the emergence of array motion provides a chance for that.In this paper,a generalized motion scheme and a novel method of 2D DOA estimation are proposed by exploring the linear array motion.To be specific,the linear arrays are controlled to move along an arbitrary direction at a constant velocity and snap per fixed time delay.All the received signals are processed to synthesize the comprehensive observation vector for an extended 2D virtual aperture.Subsequently,since most of 2D DOA estimation methods are not universal to our proposed motion scheme and the reduced-dimensional(RD)method fails to handle the case of the coupled parameters,a decoupled reduced-complexity multiple signals classification(DRC MUSIC)algorithm is designed specifically.Simulation results demonstrate that:a)our proposed scheme can achieve underdetermined 2D DOA estimation just by the linear arrays;b)our designed DRC MUSIC algorithm has the good properties of high accuracy and low complexity;c)our proposed motion scheme with the DRC method has better universality in the motion direction.
基金supported in part by the National Natural Science Foundation of China under Grant Nos. 61032007, 60972126 and 60921061the Joint Funds of the National Natural Science Foundation of China under Grant No. U0935002/L05the Natural Science Foundation of Beijing under Grant No. 4102060
文摘Existing frequency-domain-oriented methods of parameter identification for uniform linear motion blur (ULMB) images usually dealt with special scenarios. For example, blur-kernel directions were horizontal or vertical, or degraded images were of foursquare dimension. This excludes those identification methods from being applied to real images, especially to estimate undersized or oversized blur kernels. Pointing against the limitations of blur-kernel identifications, discrete Fourier transform (DFT)-based blur-kernel estimation methods are proposed in this paper. We analyze in depth the Fourier frequency response of generalized ULMB kernels, demonstrate in detail its related phase form and properties thereof, and put forward the concept of quasi-cepstrum. On this basis, methods of estimating ULMB-kernel parameters using amplitude spectrum and quasi-cepstrum are presented, respectively. The quasi-cepstrum-oriented approach increases the identifiable blur-kernel length, up to a maximum of half the diagonal length of the image. Meanwhile, directing toward the image of undersized ULMB, an improved method based on quasi-cepstrum is presented, which ameliorates the identification quality of undersized ULMB kernels. The quasi-cepstrum-oriented approach popularizes and applies the simulation-experiment- focused DFT theory to the estimation of real ULMB images. Compared against the amplitude-spectrum-oriented method, the quasi-cepstrum-oriented approach is more convenient and robust, with lower identification errors and of better noiseimmunity.
基金supported by Japan Society for the Promotion and Science (JSPS)
文摘This paper proposes a new method for measurement of the roll error motion of a slide table in a precision linear slide. The proposed method utilizes a pair of clinometers in the production process of a precision linear slide, where the roll error motion measurement will be carried out repeatedly to confirm whether the surface form errors of slide guideways in the linear slide are su ciently corrected by hand scraping process. In the proposed method, one of the clinometers is mounted on the slide table, while the other is placed on a vibration isolation table, on which the precision linear slide is mounted, so that influences of external disturbances can be cancelled. An experimental setup is built on a vibration isolation table, and some experiments are carried out to verify the feasibility of the proposed method.
基金Hie-Tch Research and Development Program of China (2002AA723011)
文摘The equilibrium manifold linearization model of nonlinear shock motion is of higher accuracy and lower complexity over other models such as the small perturbation model and the piecewise-linear model. This paper analyzes the physical significance of the equilibrium manifold linearization model, and the self-feedback mechanism of shock motion is revealed. This helps to describe the stability and dynamics of shock motion. Based on the model, the paper puts forwards a gain scheduling control method for nonlinear shock motion. Simulation has shown the validity of the control scheme.
基金support from the Innovative Research Groups of the National Natural Science Foundation of China (No.50921002)the National Natural Science Foundation of China (Nos.50574091 and 50774084)+1 种基金the "333 Project" Foundation of Jiangsu Provincethe Key Laboratory of Coal Processing & Efficient Utilization,Ministry of Education Foundation (No.CPEUKF 08-02) for this work
文摘A virtual sieving experimental simulation system was built using physical simulation principles.The effects of vibration frequency and amplitude,the inclination angle of the screen-deck and the vibration direction angle of screen on single particle kinematics were predicted.Properties such as the average velocity and the average throw height were studied.The results show that the amplitude and the angle of vibration have a great effect on particle average velocity and average height.The vibration frequency and the screen-deck inclination angle appear to have little influence on these responses.For materials that are difficult to screen the vibration frequency and amplitude,the screen-deck inclination angle and the vibration angle should be set to 14 Hz,6.6 mm,6° and 40°,respectively,to obtain optimal particle kinematics.A screening process can be simulated reliably by means of a virtual experiment and these results provide references for both screening theory research and sieving practice.
基金supported by the National Natural Science Foundation of China(Grant No.51679138)the 1000 Young Talent Program(Grant No.15Z127060020)the National Basic Research Program of China(973 Program,Grant Nos.2015CB251203 and 2013CB036103)
文摘A phenomenological model for predicting the vortex-induced motion (VIM) of a single-column platform with non- linear stiffness has been proposed. The VIM model is based on the couple of the Duffing-van der Pol oscillators and the motion equations with non-linear terms. The model with liner stiffness is presented for comparison and their results are compared with the experiments in order to calibrate the model. The computed results show that the predicted VIM amplitudes and periods of oscillation are in qualitative agreements with the experimental data. Compared with the results with linear stiffness, it is found that the application of non-linear stiffness causes the significant reductions in the in-line and transverse motion amplitudes. Under the non-linear stiffness constraint, the lock-in behavior is still identified at 8<Ur<15, and the trajectories of the VIM on the xy plane with eight-figure patterns are maintained. The results with different non-linear geometrically parameters show that both in-line and transverse non-linear characteristics can significantly affect the predict in-line and transverse motion amplitudes. Furthermore, the computed results for different aspect ratios indicate that the in-line and transverse motion amplitudes increase with the growth of aspect ratio, and the range of lock-in region is enlarged for the large aspect ratio.
文摘A new type of linear ultrasonic motor with two degrees of freedom (DOF) motion is presented. The concept of the new typical motor is based on the combination of a longitudinal and two bending modes. The construction and the operational principle of motor are described, and the elliptical motion of the driving point of the actuator is proved. Meanwhile, a prototype linear motor is designed by using the finite element method (FEM) and is constructed for experiments. The vibration modes are tested with the laser doppler vibrometer (PSV-300F), and the experimental results prove that the design requirements on the mode shape of the actuator and nature frequency are satisfied. The test run of the motor indicates that the operational principle of the motor and the design results are correct, and the output properties are also tested.
文摘A two-degree-of-freedom(2-DOF) linear ultrasonic motor (USM) consists of a cylinder-shaped stator and a slider. Two bending vibration modes with orthogonality and one longitudinal vibration mode are excited in the stator by three groups of piezoelectric ceramic elements. The combinations of any one bending mode and the longitudinal mode mentioned above push the slider to move linearly in direction x or y. Some key issues for improving the motor output properties and efficiency are given. They include selection of the vibration modes, consistency of the modal frequencies, placement of the piezoelectric ceramic elements and the supporting plane, setting of pre-pressure, and influence of interfering modes.
基金National Natural Science Foundation of China (50578007)
文摘The correlation between ground motion intensity measures (IM) and single-degree-of-freedom (SDOF) deformation demands is described in this study. Peak ground acceleration (APG), peak ground velocity (VPG), peak ground displacement (DPG), spectral acceleration at the first-mode period of vibration [As(T1)] and ratio of VPG to APG are used as IM parameters, and the correlation is characterized by correlation coefficients p. The numerical results obtained by nonlinear dynamic analyses have shown good correlation between As(T1) or VPG and deformation demands. Furthermore, the effect of As(T1) and VPG as IM on the dispersion of the mean value of deformation demands is also investigated for SDOF systems with three different periods T=0.3 s, 1.0 s, 3.0 s respectively.
基金Authors thank MANIT Bhopal and Ministry of Education,India for extending financial support for the research work.
文摘Linear switched reluctance motor(LSRM)and its applications in different industries have been an interesting research topic for the past few years.LSRMs have proved to be a suitable alternative in a variety of applications requiring linear motion.However,its use is not that popular which instigated an active interest in the evolution of newer LSRM configurations.Enhancement in its propulsion force along with the reduction in force ripples,weight,acoustic noise,and vibration have been the main objectives in recently proposed LSRM designs.In this paper,recently proposed LSRM designs are reviewed and analyzed.The paper presents a one-stop introduction and a complete update to the designs,both in terms of qualitative and quantitative parameters.In addition,it takes into account the challenges in the implementation of these designs.Based on a detailed comparison of these designs as presented in this paper,an appropriate design can be chosen for a given application.
基金Project supported by the National Natural Science Foundation of China (Grant No.50278051), and the Shanghai Leading Academic Discipline Project (Grant No.Y0103)
文摘The nonlinear dynamic characteristics of a pile embedded in a rock were investigated. Suppose that both the materials of the pile and the soil around the pile obey nonlinear elastic and linear viscoelastic constitutive relations. The nonlinear partial differential equation governing the dynamic characteristics of the pile was first derived. The Galerkin method was used to simplify the equation and to obtain a nonlinear ordinary differential equation. The methods in nonlinear dynamics were employed to solve the simplified dynamical system, and the time-path curves, phase-trajectory diagrams, power spectrum, Poincare sections and bifurcation and chaos diagrams of the motion of the pile were obtained. The effects of parameters on the dynamic characteristics of the system were also considered in detail.
文摘One of the requirements for modem production machine is versatility and easy reconfiguration to produce new products. The production machines use fixed gearing and mechanical cams in history. The cams were used for specific stokes and cam switches were used for commissioning of technological process. This solution has disadvantages in lower production speed and no flexibility of production. This article summaries practical steps for machine modernization and highlight practical problems in modernization of older production machine. The electronic cam with direct linear drive was used for traversal motion with high peak acceleration. This paper discusses cam stoke curve design, redesign and fitting.
文摘This paper presents a novel idea of utilizing the reactional torque of the conventional electric motor as a linear output for propulsion in addition to the conventional torque output of the rotor. The idea is demonstrated by a theoretical proposal of linearizing the stator of one of the most used motors </span><span style="font-family:Verdana;">in Electrical Vehicles and Hybrid Vehicles</span><span style="font-family:""><span style="font-family:Verdana;">. The proposed Linear Stator Motor is a </span><span style="font-family:Verdana;">simple modification without involving any functional change of the conventional motor. Though theoretical, the indicated possible input </span><span style="font-family:Verdana;">energy saving of more than 75% as compared to the conventional motor is no surprise, as by linearizing the stator, an almost equal linear propulsion output is added to the conventional rotor output. In addition to this remarkable saving in input energy, the proposed Linear Stator Motor that suits all type</span></span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> of vehicle</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;">, can maintain propulsion without the need for a mechanical transmission system. Also, in </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">case of watercraft and aircraft vehicles, no external mechanical propulsion drive system is required. It is just an internal force that can push the vehicle forward, backward</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> or laterally, while the conventional rotor output can be utilized for energy recovery by driving a DC generator.
文摘This paper proposes a new concept of an actively-controlled wave energy converter for suppressing the pitch and roll motions of floating offshore wind turbines.The wave energy converter consists of several floating bodies that receive the wave energy,actuators that convert the wave energy into electrical energy and generate the mechanical forces,and rigid bars that connect the floating bodies and the wind turbine platform and deliver the actuator forces to the platform.The rotational torques that are required to minimize the platform pitch and roll motions are determined using a linear quadratic regulator.The torques determined in this manner are realized through the actuator forces that maximize the wave power capture as well.The performance of the proposed wave energy converter in simultaneously suppressing the platform pitch and roll motions and extracting the wave energy is validated through simulations.