In this paper, a new global algorithm is presented to globally solve the linear multiplicative programming(LMP). The problem(LMP) is firstly converted into an equivalent programming problem(LMP(H))by introduci...In this paper, a new global algorithm is presented to globally solve the linear multiplicative programming(LMP). The problem(LMP) is firstly converted into an equivalent programming problem(LMP(H))by introducing p auxiliary variables. Then by exploiting structure of(LMP(H)), a linear relaxation programming(LP(H)) of(LMP(H)) is obtained with a problem(LMP) reduced to a sequence of linear programming problems. The algorithm is used to compute the lower bounds called the branch and bound search by solving linear relaxation programming problems(LP(H)). The proposed algorithm is proven that it is convergent to the global minimum through the solutions of a series of linear programming problems. Some examples are given to illustrate the feasibility of the proposed algorithm.展开更多
The purpose of this research is to explore the factors influencing the self-improvement process of museums in China and to conduct empirical analyses based on multiple linear regression models.As core institutions for...The purpose of this research is to explore the factors influencing the self-improvement process of museums in China and to conduct empirical analyses based on multiple linear regression models.As core institutions for inheriting and displaying cultural heritage and enhancing public cultural literacy,museums’self-improvement is of great significance in promoting cultural development,optimizing the supply of public cultural services,and enhancing social influence.This paper constructs a multiple linear regression model for the influencing factors of museum self-improvement by integrating several key variables,including emerging cultural and museum business(EF),institutional reform(SR),research and innovation level(RIL),management level(ML),and the museum cultural and creative industry(MCCI).The study employs scientific methods such as literature review,data collection,and data analysis to thoroughly explore the internal logic of museum operations and development.Through multiple linear regression analyses,it quantifies the specific influence and relative importance of each factor on the level of museum self-improvement.The results indicate that the management level(ML)is the dominant factor among the variables studied,exerting the most significant influence on museum self-improvement.Based on these empirical findings,this paper provides an in-depth analysis of the specific factors affecting museum self-improvement in China,offering solid theoretical support and practical guidance for the sustainable development of museums.展开更多
As one of the first coastal open cities in China,Yantai City is situated in the eastern Shandong Peninsula,bordered by the Yellow Sea and Bohai Sea.With the continuous improvement of tourism infrastructure,public enth...As one of the first coastal open cities in China,Yantai City is situated in the eastern Shandong Peninsula,bordered by the Yellow Sea and Bohai Sea.With the continuous improvement of tourism infrastructure,public enthusiasm for tourism in Yantai has been growing.To formulate more effective tourism development policies tailored to the local context,this study examines Yantai City using a multiple linear regression model to identify the primary factors influencing domestic tourism income.Based on the findings,this paper proposes scientifically grounded and actionable strategies to further optimize the development of tourism in Yantai City.展开更多
The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to elimin...The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.展开更多
Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea ...Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea (SCS) based on the simple ocean data assimilation (SODA) dataset. The spatio-temporal distributions of the MLD, the buoyancy flux (combining the NHF and the NFF) and the wind stress of the SCS were presented. Then using an oceanic vertical mixing model, the MLD after a certain time under the same initial conditions but various pairs of boundary conditions (the three factors) was simulated. Applying the MLR method to the results, regression equations which modeling the relationship between the simulated MLD and the three factors were calculated. The equations indicate that when the NHF was negative, it was the primary driver of the mixed layer deepening; and when the NHF was positive, the wind stress played a more important role than that of the NHF while the NFF had the least effect. When the NHF was positive, the relative quantitative effects of the wind stress, the NHF, and the NFF were about i0, 6 and 2. The above conclusions were applied to explaining the spatio-temporal distributions of the MLD in the SCS and thus proved to be valid.展开更多
Many properties of fruit are influenced by plant nutrition. Fruit firmness is one of the most important fruit characteristics and determines post-harvest life of the fruit, in recent decades, artificial intelligence s...Many properties of fruit are influenced by plant nutrition. Fruit firmness is one of the most important fruit characteristics and determines post-harvest life of the fruit, in recent decades, artificial intelligence systems were employed for developing predictive models to estimate and predict many agriculture processes. In the present study, the predictive capabilities of multiple linear regressions (MLR) and artificial neural networks (ANNs) are evaluated to estimate fruit firmness in six months, including each of nutrients concentrations (nitrogen (N), potassium (K), calcium (Ca) and magnesium (Mg)) alone (P1), com- bination of nutrients concentrations (P2), nutrient concentration ratios alone (P3), and combination of nutrient concentrations and nutrient concentration ratios (P4). The results showed that MLR model estimated fruit firmness more accuracy than ANN model in three datasets (P1, P2 and P4). However, the application of P3 (N/Ca ratio) as the input dataset in ANN model improved the prediction of fruit firmness than the MLR model. Correlation coefficient and root mean squared error (RMSE) were 0.850 and 0.539 between the measured and the estimated data by the ANN model, respectively. Generally, the ANN model showed greater potential in determining the relationship between 6-mon-fruit firmness and nutrients concentration.展开更多
Prediction of mode I fracture toughness(KIC) of rock is of significant importance in rock engineering analyses. In this study, linear multiple regression(LMR) and gene expression programming(GEP)methods were used to p...Prediction of mode I fracture toughness(KIC) of rock is of significant importance in rock engineering analyses. In this study, linear multiple regression(LMR) and gene expression programming(GEP)methods were used to provide a reliable relationship to determine mode I fracture toughness of rock. The presented model was developed based on 60 datasets taken from the previous literature. To predict fracture parameters, three mechanical parameters of rock mass including uniaxial compressive strength(UCS), Brazilian tensile strength(BTS), and elastic modulus(E) have been selected as the input parameters. A cluster of data was collected and divided into two random groups of training and testing datasets.Then, different statistical linear and artificial intelligence based nonlinear analyses were conducted on the training data to provide a reliable prediction model of KIC. These two predictive methods were then evaluated based on the testing data. To evaluate the efficiency of the proposed models for predicting the mode I fracture toughness of rock, various statistical indices including coefficient of determination(R2),root mean square error(RMSE), and mean absolute error(MAE) were utilized herein. In the case of testing datasets, the values of R2, RMSE, and MAE for the GEP model were 0.87, 0.188, and 0.156,respectively, while they were 0.74, 0.473, and 0.223, respectively, for the LMR model. The results indicated that the selected GEP model delivered superior performance with a higher R2value and lower errors.展开更多
In current paper, a quantitative structure-activity relationship (QSAR) study was performed for the prediction of acute toxicity of aromatic amines. A set of 56 compounds was randomly divided into a training set of ...In current paper, a quantitative structure-activity relationship (QSAR) study was performed for the prediction of acute toxicity of aromatic amines. A set of 56 compounds was randomly divided into a training set of 46 compounds and a test set of 10 compounds. The electronic and topological descriptors computed by the Scigress package and Dragon software were used as predictor variables. Multiple linear regression (MLR) and support vector machine (SVM) were utilized to build the linear and nonlinear QSAR models, respectively. The obtained models with five descriptors show strong predictive ability. The linear model fits the training set with R2 = 0.71, with higher SVM values of R2 = 0.77. The validation results obtained from the test set indicate that the SVM model is comparable or superior to that obtained by MLR, both in terms of prediction ability and robustness.展开更多
The purpose of this study was to determine a suitable model for investigating the effects of climate factors on the area burned by forest fire in the Tahe forest region, Daxing'an Mountains, in northeast China. The r...The purpose of this study was to determine a suitable model for investigating the effects of climate factors on the area burned by forest fire in the Tahe forest region, Daxing'an Mountains, in northeast China. The response variables were the area burned by lightning- caused fire, human-caused fire, and total burned area. The predictor variables were nine climate variables collected from the local weather station. Three regression models were utilized, including multiple linear regression, log- linear model (log-transformation on both response and predictor variables), and gamma-generalized linear model. The goodness-of-fit of the models were compared based on model fitting statistics such as R2, AIC, and RMSE. The results revealed that the gamma-generalized linear model was generally superior to both multiple linear regressionmodel and log-linear model for fitting the fire data. Further, the best models were selected based on the criteria that the climate variables were statistically significant at at = 0.05. The gamma best models indicated that maximum wind speed, precipitation, and days that rainfall greater than 0.1 mm had significant impacts on the area burned by the lightning-caused fire, while the mean temperature and minimum relative humidity were the .main drivers of the burned area caused by human activities. Overall, the total burned area by forest fire was significantly influenced by days that rainfall greater than 0.1 mm and minimum rela- tive humidity, indicating that the moisture condition of forest stands determine the burned area by forest fire.展开更多
The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and st...The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and stored in two parts separately. One part is associated with the volume integral and the other is associated with the subsurface boundary integral. The equivalent multiple linear systems with closer right-hand sides than the original systems were constructed. A recycling Krylov subspace technique was employed to solve the multiple linear systems. The solution of the seed system was used as an initial guess for the subsequent systems. The results of two numerical experiments show that the improved algorithm reduces the iterations and CPU time by almost 50%, compared with the classical preconditioned conjugate gradient method.展开更多
Understanding the spatial-temporal dynamics of crop nitrogen(N)use efficiency(NUE)and the relationship with explanatory environmental variables can support land-use management and policymaking.Nevertheless,the applica...Understanding the spatial-temporal dynamics of crop nitrogen(N)use efficiency(NUE)and the relationship with explanatory environmental variables can support land-use management and policymaking.Nevertheless,the application of statistical models for evaluating the explanatory variables of space-time variation in crop NUE is still under-researched.In this study,stepwise multiple linear regression(SMLR)and Random Forest(RF)were used to evaluate the spatial and temporal variation of NUE indicators(i.e.,partial factor productivity of N(PFPN);partial nutrient balance of N(PNBN))at county scale in Northeast China(Heilongjiang,Liaoning and Jilin provinces)from 1990 to 2015.Explanatory variables included agricultural management practices,topography,climate,economy,soil and crop types.Results revealed that the PFPN was higher in the northern parts and lower in the center of the Northeast China and PNBN increased from southern to northern parts during the 1990–2015 period.The NUE indicators decreased with time in most counties during the study period.The model efficiency coefficients of the SMLR and RF models were 0.44 and 0.84 for PFPN,and 0.67 and 0.89 for PNBN,respectively.The RF model had higher relative importance of soil and climatic covariates and lower relative importance of crop covariates compared to the SMLR model.The planting area index of vegetables and beans,soil clay content,saturated water content,enhanced vegetation index in November&December,soil bulk density,and annual minimum temperature were the main explanatory variables for both NUE indicators.This is the first study to show the quantitative relative importance of explanatory variables for NUE at a county level in Northeast China using RF and SMLR.This novel study gives reference measurements to improve crop NUE which is one of the most effective means of managing N for sustainable development,ensuring food security,alleviating environmental degradation and increasing farmer’s profitability.展开更多
The kinetics equation of deposition rate was implemented to help explain some of the mechanisms responsible for structures observed during the deposition of CoFeB films on poly-ester plastic. The plating rate of elect...The kinetics equation of deposition rate was implemented to help explain some of the mechanisms responsible for structures observed during the deposition of CoFeB films on poly-ester plastic. The plating rate of electroless CoFeB films is a function of concentration of sodium tetrahydroborate, pH of the plating bath, plating temperature and the metallic ratio. The estimated regression coefficient, confidence interval, residual error and confidence interval were confirmed by computer program. The optimal composition of the plating bath was obtained and the dynamic electromagnetic parameters of films were measured in the 2-10 GHz range. At 2 GHz, the permeability, magnetic loss of the electroless CoFeB films were 304,76.6 respectively as the concentration of reducer is 1 g·L^-1.展开更多
The seed method is used for solving multiple linear systems A (i)x (i) =b (i) for 1≤i≤s, where the coefficient matrix A (i) and the right-hand side b (i) are different in general. It is known that the CG meth...The seed method is used for solving multiple linear systems A (i)x (i) =b (i) for 1≤i≤s, where the coefficient matrix A (i) and the right-hand side b (i) are different in general. It is known that the CG method is an effective method for symmetric coefficient matrices A (i). In this paper, the FOM method is employed to solve multiple linear sy stems when coefficient matrices are non-symmetric matrices. One of the systems is selected as the seed system which generates a Krylov subspace, then the resi duals of other systems are projected onto the generated Krylov subspace to get t he approximate solutions for the unsolved ones. The whole process is repeated u ntil all the systems are solved.展开更多
A primal-dual infeasible interior point algorithm for multiple objective linear programming (MOLP) problems was presented. In contrast to the current MOLP algorithm. moving through the interior of polytope but not con...A primal-dual infeasible interior point algorithm for multiple objective linear programming (MOLP) problems was presented. In contrast to the current MOLP algorithm. moving through the interior of polytope but not confining the iterates within the feasible region in our proposed algorithm result in a solution approach that is quite different and less sensitive to problem size, so providing the potential to dramatically improve the practical computation effectiveness.展开更多
Recognition method of traffic flow change point was put forward based on traffic flow theory and the statistical change point analysis of multiple linear regressions. The method was calibrated and tested with the fiel...Recognition method of traffic flow change point was put forward based on traffic flow theory and the statistical change point analysis of multiple linear regressions. The method was calibrated and tested with the field data of Liantong Road of Zibo city to verify the validity and the feasibility of the theory. The results show that change point method of multiple linear regression can make out the rule of quantitative changes in traffic flow more accurately than ordinary methods. So, the change point method can be applied to traffic information management system more effectively.展开更多
In this paper we firstly select main factors relating to urbanization level of Xiantao District in Hubei Province by main element, then, make model of urbanization level by analysis of multiple liner regression, and l...In this paper we firstly select main factors relating to urbanization level of Xiantao District in Hubei Province by main element, then, make model of urbanization level by analysis of multiple liner regression, and lastly predict its urbanization level展开更多
Anti-inflammatory activity of a series of tri-substituted pyrimidine derivatives was predicted using two Quantitative Structure-Activity Relationship models. These relationships were developed from molecular descripto...Anti-inflammatory activity of a series of tri-substituted pyrimidine derivatives was predicted using two Quantitative Structure-Activity Relationship models. These relationships were developed from molecular descriptors calculated using the DFT quantum chemistry method using the B3LYP/6-31G(d,p) level of theory and molecular lipophilicity. Thus, the four descriptors which are the dipole moment μ<sub>D</sub>, the energy of the highest occupied molecular orbital E<sub>HOMO</sub>, the isotropic polarizability α and the ACD/logP lipophilicity were selected for this purpose. The Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) models are respectively accredited with the following statistical indicators: R<sup>2</sup>=91.28%, R<sup>2</sup><sub>aj</sub>=89.11%, RMCE = 0.2831, R<sup>2</sup><sub>ext</sub>=86.50% and R<sup>2</sup>=98.22%, R<sup>2</sup><sub>aj</sub>=97.75%, RMCE = 0.1131, R<sup>2</sup><sub>ext</sub>=98.54%. The results obtained with the artificial neural network are better than those of the multiple linear regression. However, these results show that the two models developed have very good predictive performance of anti-inflammatory activity. These two models can therefore be used to predict anti-inflammatory activity of new similar pyrimidine derivatives.展开更多
The weakly forced vibration of an axially moving viscoelastic beam is inves- tigated. The viscoelastic material of the beam is constituted by the standard linear solid model with the material time derivative involved....The weakly forced vibration of an axially moving viscoelastic beam is inves- tigated. The viscoelastic material of the beam is constituted by the standard linear solid model with the material time derivative involved. The nonlinear equations governing the transverse vibration are derived from the dynamical, constitutive, and geometrical relations. The method of multiple scales is used to determine the steady-state response. The modulation equation is derived from the solvability condition of eliminating secular terms. Closed-form expressions of the amplitude and existence condition of nontrivial steady-state response are derived from the modulation equation. The stability of non- trivial steady-state response is examined via the Routh-Hurwitz criterion.展开更多
This paper selects seven indicators of financial revenue and housing sales price in recent 19 years in China,and uses SPSS and Excel to carry out descriptive statistics,independent sample t-test,correlation analysis a...This paper selects seven indicators of financial revenue and housing sales price in recent 19 years in China,and uses SPSS and Excel to carry out descriptive statistics,independent sample t-test,correlation analysis and regression analysis to comprehensively study the correlation between financial revenue and housing sales price in China,and establishes the relationship between financial revenue and housing sales price When the average selling price of commercial housing increases by one unit,the fiscal revenue will increase by 27.855 points.展开更多
Quantitative structure–activity relationship (QSAR) models were developed to predict for CCR5 binding affinity of substituted 1-(3, 3-diphenylpropyl)-piperidinyl amides and ureas using multiple linear regression (MLR...Quantitative structure–activity relationship (QSAR) models were developed to predict for CCR5 binding affinity of substituted 1-(3, 3-diphenylpropyl)-piperidinyl amides and ureas using multiple linear regression (MLR) and artificial neural network (ANN) techniques. A model with four descriptors, including Hydrogen-bonding donors HBD(R7), the partition coefficient between n-octanol and water logP and logP(R1) and Molecular weight MW(R7), showed good statistics both in the regression and artificial neural network with a configuration of (4-3-1) by using Bayesian and Leven-berg-Marquardt Methods. Comparison of the descriptor’s contribution obtained in MLR and ANN analysis shows that the contribution of some of the descriptors to activity may be non-linear.展开更多
基金Supported by the PhD Start-up Fund of Natural Science Foundation of Guangdong Province,China(No.S2013040012506)China Postdoctoral Science Foundation Funded Project(2014M562152)
文摘In this paper, a new global algorithm is presented to globally solve the linear multiplicative programming(LMP). The problem(LMP) is firstly converted into an equivalent programming problem(LMP(H))by introducing p auxiliary variables. Then by exploiting structure of(LMP(H)), a linear relaxation programming(LP(H)) of(LMP(H)) is obtained with a problem(LMP) reduced to a sequence of linear programming problems. The algorithm is used to compute the lower bounds called the branch and bound search by solving linear relaxation programming problems(LP(H)). The proposed algorithm is proven that it is convergent to the global minimum through the solutions of a series of linear programming problems. Some examples are given to illustrate the feasibility of the proposed algorithm.
基金2024 Guangdong Philosophy and Social Science Planning Discipline Co-construction Project“Study on the Measurement of Economic Benefits and Path of High-Quality Development of Museums in Guangdong Province”(Project No.GD24XYS045)Key Project of the Social Sciences Division of Shenzhen Polytechnic University“Research on Strategies for Enhancing the Effectiveness of Non-State-Owned Museums in Shenzhen”(Project No.20240105)+1 种基金Shenzhen Polytechnic University’s Platform Construction Project“SZPU-Fangzhi Technology AI New Media R&D Centre”(Project No:602331019PQ)Open-ended Project of the Global Urban Civilization Model Research Institute of Southern University of Science and Technology in 2024,“Research on the Efficiency Enhancement Strategy of Non State owned Museums in Shenzhen from the Perspective of Urban Civilization Construction”(Project No.IGUC24C011)。
文摘The purpose of this research is to explore the factors influencing the self-improvement process of museums in China and to conduct empirical analyses based on multiple linear regression models.As core institutions for inheriting and displaying cultural heritage and enhancing public cultural literacy,museums’self-improvement is of great significance in promoting cultural development,optimizing the supply of public cultural services,and enhancing social influence.This paper constructs a multiple linear regression model for the influencing factors of museum self-improvement by integrating several key variables,including emerging cultural and museum business(EF),institutional reform(SR),research and innovation level(RIL),management level(ML),and the museum cultural and creative industry(MCCI).The study employs scientific methods such as literature review,data collection,and data analysis to thoroughly explore the internal logic of museum operations and development.Through multiple linear regression analyses,it quantifies the specific influence and relative importance of each factor on the level of museum self-improvement.The results indicate that the management level(ML)is the dominant factor among the variables studied,exerting the most significant influence on museum self-improvement.Based on these empirical findings,this paper provides an in-depth analysis of the specific factors affecting museum self-improvement in China,offering solid theoretical support and practical guidance for the sustainable development of museums.
文摘As one of the first coastal open cities in China,Yantai City is situated in the eastern Shandong Peninsula,bordered by the Yellow Sea and Bohai Sea.With the continuous improvement of tourism infrastructure,public enthusiasm for tourism in Yantai has been growing.To formulate more effective tourism development policies tailored to the local context,this study examines Yantai City using a multiple linear regression model to identify the primary factors influencing domestic tourism income.Based on the findings,this paper proposes scientifically grounded and actionable strategies to further optimize the development of tourism in Yantai City.
基金supported by the National Natural Science Foundation of China(71071077)the Ministry of Education Key Project of National Educational Science Planning(DFA090215)+1 种基金China Postdoctoral Science Foundation(20100481137)Funding of Jiangsu Innovation Program for Graduate Education(CXZZ11-0226)
文摘The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.
基金The National Natural Science Foundation of China under contract No.11174235the Science and Technology Development Project of Shaanxi Province of China under contract No.2010KJXX-02+2 种基金the Program for New Century Excellent Talents in University of China under contract No. NCET-08-0455the Science and Technology Innovation Foundation of Northwestern Polytechnical University of Chinathe Doctorate Foundation of Northwestern Polytechnical University of China under contract No.CX201226.
文摘Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea (SCS) based on the simple ocean data assimilation (SODA) dataset. The spatio-temporal distributions of the MLD, the buoyancy flux (combining the NHF and the NFF) and the wind stress of the SCS were presented. Then using an oceanic vertical mixing model, the MLD after a certain time under the same initial conditions but various pairs of boundary conditions (the three factors) was simulated. Applying the MLR method to the results, regression equations which modeling the relationship between the simulated MLD and the three factors were calculated. The equations indicate that when the NHF was negative, it was the primary driver of the mixed layer deepening; and when the NHF was positive, the wind stress played a more important role than that of the NHF while the NFF had the least effect. When the NHF was positive, the relative quantitative effects of the wind stress, the NHF, and the NFF were about i0, 6 and 2. The above conclusions were applied to explaining the spatio-temporal distributions of the MLD in the SCS and thus proved to be valid.
文摘Many properties of fruit are influenced by plant nutrition. Fruit firmness is one of the most important fruit characteristics and determines post-harvest life of the fruit, in recent decades, artificial intelligence systems were employed for developing predictive models to estimate and predict many agriculture processes. In the present study, the predictive capabilities of multiple linear regressions (MLR) and artificial neural networks (ANNs) are evaluated to estimate fruit firmness in six months, including each of nutrients concentrations (nitrogen (N), potassium (K), calcium (Ca) and magnesium (Mg)) alone (P1), com- bination of nutrients concentrations (P2), nutrient concentration ratios alone (P3), and combination of nutrient concentrations and nutrient concentration ratios (P4). The results showed that MLR model estimated fruit firmness more accuracy than ANN model in three datasets (P1, P2 and P4). However, the application of P3 (N/Ca ratio) as the input dataset in ANN model improved the prediction of fruit firmness than the MLR model. Correlation coefficient and root mean squared error (RMSE) were 0.850 and 0.539 between the measured and the estimated data by the ANN model, respectively. Generally, the ANN model showed greater potential in determining the relationship between 6-mon-fruit firmness and nutrients concentration.
文摘Prediction of mode I fracture toughness(KIC) of rock is of significant importance in rock engineering analyses. In this study, linear multiple regression(LMR) and gene expression programming(GEP)methods were used to provide a reliable relationship to determine mode I fracture toughness of rock. The presented model was developed based on 60 datasets taken from the previous literature. To predict fracture parameters, three mechanical parameters of rock mass including uniaxial compressive strength(UCS), Brazilian tensile strength(BTS), and elastic modulus(E) have been selected as the input parameters. A cluster of data was collected and divided into two random groups of training and testing datasets.Then, different statistical linear and artificial intelligence based nonlinear analyses were conducted on the training data to provide a reliable prediction model of KIC. These two predictive methods were then evaluated based on the testing data. To evaluate the efficiency of the proposed models for predicting the mode I fracture toughness of rock, various statistical indices including coefficient of determination(R2),root mean square error(RMSE), and mean absolute error(MAE) were utilized herein. In the case of testing datasets, the values of R2, RMSE, and MAE for the GEP model were 0.87, 0.188, and 0.156,respectively, while they were 0.74, 0.473, and 0.223, respectively, for the LMR model. The results indicated that the selected GEP model delivered superior performance with a higher R2value and lower errors.
基金Supported by the Ministry of Environmental Protection of China(No.2011467037)
文摘In current paper, a quantitative structure-activity relationship (QSAR) study was performed for the prediction of acute toxicity of aromatic amines. A set of 56 compounds was randomly divided into a training set of 46 compounds and a test set of 10 compounds. The electronic and topological descriptors computed by the Scigress package and Dragon software were used as predictor variables. Multiple linear regression (MLR) and support vector machine (SVM) were utilized to build the linear and nonlinear QSAR models, respectively. The obtained models with five descriptors show strong predictive ability. The linear model fits the training set with R2 = 0.71, with higher SVM values of R2 = 0.77. The validation results obtained from the test set indicate that the SVM model is comparable or superior to that obtained by MLR, both in terms of prediction ability and robustness.
基金funded by Asia-Pacific Forests Net(APFNET/2010/FPF/001)National Natural Science Foundation of China(Grant No.31400552)Forestry industry research special funds for public welfare projects(201404402)
文摘The purpose of this study was to determine a suitable model for investigating the effects of climate factors on the area burned by forest fire in the Tahe forest region, Daxing'an Mountains, in northeast China. The response variables were the area burned by lightning- caused fire, human-caused fire, and total burned area. The predictor variables were nine climate variables collected from the local weather station. Three regression models were utilized, including multiple linear regression, log- linear model (log-transformation on both response and predictor variables), and gamma-generalized linear model. The goodness-of-fit of the models were compared based on model fitting statistics such as R2, AIC, and RMSE. The results revealed that the gamma-generalized linear model was generally superior to both multiple linear regressionmodel and log-linear model for fitting the fire data. Further, the best models were selected based on the criteria that the climate variables were statistically significant at at = 0.05. The gamma best models indicated that maximum wind speed, precipitation, and days that rainfall greater than 0.1 mm had significant impacts on the area burned by the lightning-caused fire, while the mean temperature and minimum relative humidity were the .main drivers of the burned area caused by human activities. Overall, the total burned area by forest fire was significantly influenced by days that rainfall greater than 0.1 mm and minimum rela- tive humidity, indicating that the moisture condition of forest stands determine the burned area by forest fire.
基金Projects(40974077,41164004)supported by the National Natural Science Foundation of ChinaProject(2007AA06Z134)supported by the National High Technology Research and Development Program of China+2 种基金Projects(2011GXNSFA018003,0832263)supported by the Natural Science Foundation of Guangxi Province,ChinaProject supported by Program for Excellent Talents in Guangxi Higher Education Institution,ChinaProject supported by the Foundation of Guilin University of Technology,China
文摘The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and stored in two parts separately. One part is associated with the volume integral and the other is associated with the subsurface boundary integral. The equivalent multiple linear systems with closer right-hand sides than the original systems were constructed. A recycling Krylov subspace technique was employed to solve the multiple linear systems. The solution of the seed system was used as an initial guess for the subsequent systems. The results of two numerical experiments show that the improved algorithm reduces the iterations and CPU time by almost 50%, compared with the classical preconditioned conjugate gradient method.
基金the China Scholarship Council(CSC)(201903250115)the National Natural Science Foundation of China(31972515)the China Agriculture Research System of MOF and MARA(CARS-09-P31).
文摘Understanding the spatial-temporal dynamics of crop nitrogen(N)use efficiency(NUE)and the relationship with explanatory environmental variables can support land-use management and policymaking.Nevertheless,the application of statistical models for evaluating the explanatory variables of space-time variation in crop NUE is still under-researched.In this study,stepwise multiple linear regression(SMLR)and Random Forest(RF)were used to evaluate the spatial and temporal variation of NUE indicators(i.e.,partial factor productivity of N(PFPN);partial nutrient balance of N(PNBN))at county scale in Northeast China(Heilongjiang,Liaoning and Jilin provinces)from 1990 to 2015.Explanatory variables included agricultural management practices,topography,climate,economy,soil and crop types.Results revealed that the PFPN was higher in the northern parts and lower in the center of the Northeast China and PNBN increased from southern to northern parts during the 1990–2015 period.The NUE indicators decreased with time in most counties during the study period.The model efficiency coefficients of the SMLR and RF models were 0.44 and 0.84 for PFPN,and 0.67 and 0.89 for PNBN,respectively.The RF model had higher relative importance of soil and climatic covariates and lower relative importance of crop covariates compared to the SMLR model.The planting area index of vegetables and beans,soil clay content,saturated water content,enhanced vegetation index in November&December,soil bulk density,and annual minimum temperature were the main explanatory variables for both NUE indicators.This is the first study to show the quantitative relative importance of explanatory variables for NUE at a county level in Northeast China using RF and SMLR.This novel study gives reference measurements to improve crop NUE which is one of the most effective means of managing N for sustainable development,ensuring food security,alleviating environmental degradation and increasing farmer’s profitability.
基金the National Natural Science Foundation of China(No.50371029
文摘The kinetics equation of deposition rate was implemented to help explain some of the mechanisms responsible for structures observed during the deposition of CoFeB films on poly-ester plastic. The plating rate of electroless CoFeB films is a function of concentration of sodium tetrahydroborate, pH of the plating bath, plating temperature and the metallic ratio. The estimated regression coefficient, confidence interval, residual error and confidence interval were confirmed by computer program. The optimal composition of the plating bath was obtained and the dynamic electromagnetic parameters of films were measured in the 2-10 GHz range. At 2 GHz, the permeability, magnetic loss of the electroless CoFeB films were 304,76.6 respectively as the concentration of reducer is 1 g·L^-1.
基金Project supported by the National Natural Science Foundation of China (Grant No.10271075)
文摘The seed method is used for solving multiple linear systems A (i)x (i) =b (i) for 1≤i≤s, where the coefficient matrix A (i) and the right-hand side b (i) are different in general. It is known that the CG method is an effective method for symmetric coefficient matrices A (i). In this paper, the FOM method is employed to solve multiple linear sy stems when coefficient matrices are non-symmetric matrices. One of the systems is selected as the seed system which generates a Krylov subspace, then the resi duals of other systems are projected onto the generated Krylov subspace to get t he approximate solutions for the unsolved ones. The whole process is repeated u ntil all the systems are solved.
基金Supported by the Doctoral Educational Foundation of China of the Ministry of Education(20020486035)
文摘A primal-dual infeasible interior point algorithm for multiple objective linear programming (MOLP) problems was presented. In contrast to the current MOLP algorithm. moving through the interior of polytope but not confining the iterates within the feasible region in our proposed algorithm result in a solution approach that is quite different and less sensitive to problem size, so providing the potential to dramatically improve the practical computation effectiveness.
基金National Natural Science Foundations of China(No. 61074140,No. 60974094)Young Teacher Development Support Project of Shandong University of Technology,China
文摘Recognition method of traffic flow change point was put forward based on traffic flow theory and the statistical change point analysis of multiple linear regressions. The method was calibrated and tested with the field data of Liantong Road of Zibo city to verify the validity and the feasibility of the theory. The results show that change point method of multiple linear regression can make out the rule of quantitative changes in traffic flow more accurately than ordinary methods. So, the change point method can be applied to traffic information management system more effectively.
文摘In this paper we firstly select main factors relating to urbanization level of Xiantao District in Hubei Province by main element, then, make model of urbanization level by analysis of multiple liner regression, and lastly predict its urbanization level
文摘Anti-inflammatory activity of a series of tri-substituted pyrimidine derivatives was predicted using two Quantitative Structure-Activity Relationship models. These relationships were developed from molecular descriptors calculated using the DFT quantum chemistry method using the B3LYP/6-31G(d,p) level of theory and molecular lipophilicity. Thus, the four descriptors which are the dipole moment μ<sub>D</sub>, the energy of the highest occupied molecular orbital E<sub>HOMO</sub>, the isotropic polarizability α and the ACD/logP lipophilicity were selected for this purpose. The Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) models are respectively accredited with the following statistical indicators: R<sup>2</sup>=91.28%, R<sup>2</sup><sub>aj</sub>=89.11%, RMCE = 0.2831, R<sup>2</sup><sub>ext</sub>=86.50% and R<sup>2</sup>=98.22%, R<sup>2</sup><sub>aj</sub>=97.75%, RMCE = 0.1131, R<sup>2</sup><sub>ext</sub>=98.54%. The results obtained with the artificial neural network are better than those of the multiple linear regression. However, these results show that the two models developed have very good predictive performance of anti-inflammatory activity. These two models can therefore be used to predict anti-inflammatory activity of new similar pyrimidine derivatives.
基金Project supported by the National Natural Science Foundation of China (No.10972143)the Shanghai Municipal Education Commission (No.YYY11040)+2 种基金the Shanghai Leading Academic Discipline Project (No.J51501)the Leading Academic Discipline Project of Shanghai Institute of Technology(No.1020Q121001)the Start Foundation for Introducing Talents of Shanghai Institute of Technology (No.YJ2011-26)
文摘The weakly forced vibration of an axially moving viscoelastic beam is inves- tigated. The viscoelastic material of the beam is constituted by the standard linear solid model with the material time derivative involved. The nonlinear equations governing the transverse vibration are derived from the dynamical, constitutive, and geometrical relations. The method of multiple scales is used to determine the steady-state response. The modulation equation is derived from the solvability condition of eliminating secular terms. Closed-form expressions of the amplitude and existence condition of nontrivial steady-state response are derived from the modulation equation. The stability of non- trivial steady-state response is examined via the Routh-Hurwitz criterion.
基金Thank you for your valuable comments and suggestions.This research was supported by Yunnan applied basic research project(NO.2017FD150)Chuxiong Normal University General Research Project(NO.XJYB2001).
文摘This paper selects seven indicators of financial revenue and housing sales price in recent 19 years in China,and uses SPSS and Excel to carry out descriptive statistics,independent sample t-test,correlation analysis and regression analysis to comprehensively study the correlation between financial revenue and housing sales price in China,and establishes the relationship between financial revenue and housing sales price When the average selling price of commercial housing increases by one unit,the fiscal revenue will increase by 27.855 points.
基金The authors thank Centre National de la Recherche Sci-entifique et Technique(CNRST)for funding this project under the RS program.
文摘Quantitative structure–activity relationship (QSAR) models were developed to predict for CCR5 binding affinity of substituted 1-(3, 3-diphenylpropyl)-piperidinyl amides and ureas using multiple linear regression (MLR) and artificial neural network (ANN) techniques. A model with four descriptors, including Hydrogen-bonding donors HBD(R7), the partition coefficient between n-octanol and water logP and logP(R1) and Molecular weight MW(R7), showed good statistics both in the regression and artificial neural network with a configuration of (4-3-1) by using Bayesian and Leven-berg-Marquardt Methods. Comparison of the descriptor’s contribution obtained in MLR and ANN analysis shows that the contribution of some of the descriptors to activity may be non-linear.