Permanent magnet linear synchronous motor(PMLSM)has the advantages of high thrust density and good control accuracy,which can be applied in high-power and high-speed occasions.In this paper,the analytical models are e...Permanent magnet linear synchronous motor(PMLSM)has the advantages of high thrust density and good control accuracy,which can be applied in high-power and high-speed occasions.In this paper,the analytical models are established to obtain the electromagnetic performance for the PMLSMs with dual secondaries and dual primaries.The air-gap flux density and the electromagnetic thrust are also obtained by the finite element model to verify theoretical analysis.Besides,an improved structure is also put forward in order to suppress the thrust fluctuation of the PMLSM.Finally,the advantages and disadvantages of two PMLSMs topologies are listed.These analyses would provide a guide for the design of PMLSMs applied in high-power and high-speed occasions.展开更多
This paper presents a method for compensating the force ripple in permanent magnet linear synchronous motors(PMLSMs)by adopting a composite feedforward compensation scheme.Firstly,the vector control system of PMLSMs i...This paper presents a method for compensating the force ripple in permanent magnet linear synchronous motors(PMLSMs)by adopting a composite feedforward compensation scheme.Firstly,the vector control system of PMLSMs is described,and various force disturbances influencing the electromagnetic thrust are analyzed.As a result,the mathematical model of the whole system considering the force ripple is established.Then,a novel composite feedforward compensation scheme is proposed,which consists of a recursive least squares(RLS)parameter identification component and two feedforward compensation loops corresponding to the reference position trajectory and the force ripple,respectively.Finally,the effectiveness and advantages of the proposed composite feedforward compensation are demonstrated by simulation.The main incentive of this paper is the combination with the composite feedforward compensation loop corresponding to the reference position trajectory to improve the compensation effect of force ripple in PMLSMs.展开更多
In this paper,a compound sliding mode velocity control scheme with a new exponential reaching law(NERL)with thrust ripple observation strategy is proposed to obtain a high performance velocity loop of the linear perma...In this paper,a compound sliding mode velocity control scheme with a new exponential reaching law(NERL)with thrust ripple observation strategy is proposed to obtain a high performance velocity loop of the linear permanent magnet synchronous motor(LPMSM)control system.A sliding mode velocity controller based on NERL is firstly discussed to restrain chattering of the conventional exponential reaching law(CERL).Furthermore,the unavoidable thrust ripple caused by the special structure of linear motor will bring about velocity fluctuation and reduced control performance.Thus,a thrust ripple compensation strategy on the basis of extend Kalman filter(EKF)theory is proposed.The estimated thrust ripple will be introduced into the sliding mode velocity controller to optimize the control accuracy and robustness.The effectiveness of the proposal is validated with experimental results.展开更多
To guarantee the safety of the high speed maglev train system, a novel model based on the winding function theory is proposed for the long-stator linear synchronous motor(LSM), which is suitable for the real-time ca...To guarantee the safety of the high speed maglev train system, a novel model based on the winding function theory is proposed for the long-stator linear synchronous motor(LSM), which is suitable for the real-time calculation of the running state. The accurate coupled mathematical models under different internal fault conditions of the LSM are derived based on the normal model. Then the fault currents and electromagnetic forces are simulated and calculated for the major potential internal faults of the LSM, such as the single-phase short circuit, the phase-phase short circuit and the single-phase open circuit. The characteristic curve between the electromagnetic force and the armature current of the LSM, which is compared with the results from the finite element method, proves the validation of the proposed method. The fault rule is determined and the proposed analytical model also shows its feasibility in the fast fault diagnosis through the comparison of the simulation results of currents and electromagnetic forces under different internal fault types and short circuit ratios.展开更多
A novel elevator door driven by tubular permanent magnet linear synchronous motor (TPMLSM) is presented. This TPMLSM applies axial magnet array topology of the secondary rod, air-cored armature windings and slotless s...A novel elevator door driven by tubular permanent magnet linear synchronous motor (TPMLSM) is presented. This TPMLSM applies axial magnet array topology of the secondary rod, air-cored armature windings and slotless structure of the forcer to improve the stability of the thrust. The influence of two major dimensions, the pitch and radius of the permanent magnet (PM), on magnetic field was studied and the best values were given by the finite element analysis (FEA). The magnetic field, back EMF and thrust of the motor were analyzed and the PM size was optimized to reduce the harmonic components of the magnetic field and improve the performance of the motor. Predicted results are validated by the experiment. It is shown that the performance of the motor and the novel elevator door system is satisfying.展开更多
A discontinuity of magnetic circuits according to the end effect is generated in the permanent magnet linear synchronous motor (PMLSM). Due to the unbalanced back electro-motive force (EMF) and impedance produced,...A discontinuity of magnetic circuits according to the end effect is generated in the permanent magnet linear synchronous motor (PMLSM). Due to the unbalanced back electro-motive force (EMF) and impedance produced, unbalanced current is generated. The cireulatin8 current, which is caused by a decrease in the thrust, is generated by the unbalanced current. The optimal design of auxiliary-teeth at the end of the mover was carried out to solve the unbalance of phase by using design of experiment (DOE), and compared with the basic model through finite element analysis (FEA). As a result, the auxiliary-teeth model compensates for the decrease of thrust caused by the unbalanced phase. Also, this model is proven to reduce the detent force by the vibration and noise of the PMLSM and copper loss caused by the circulating current.展开更多
In this paper, with the non-salient pole permanent magnet linear synchronous motor (PMLSM)being cited, by using Fourier transform method and "slot-by-slot", "pole -by-pole" current approach, a 3D e...In this paper, with the non-salient pole permanent magnet linear synchronous motor (PMLSM)being cited, by using Fourier transform method and "slot-by-slot", "pole -by-pole" current approach, a 3D electromagnetic field model of PMLSM is established. Special attention is paid to its structure and the influence of longitudinal and transverse end effect. The distribution of electromagnetic field of PMLSM can be obtained directly and promptly by using FFT algorithm. It can also be used for the analysis of other LSM.展开更多
Dynamic stability analysis of superconducting electro-dynamic maglev train under lateral and yawing motion condition is the key research content.The novel three-dimensional electromagnetic model of integrated linear s...Dynamic stability analysis of superconducting electro-dynamic maglev train under lateral and yawing motion condition is the key research content.The novel three-dimensional electromagnetic model of integrated linear synchronous motor in electro-dynamic maglev train with yawing operation condition is proposed,which can not only simultaneously achieve the propulsion,levitation and guidance performances of maglev vehicle,but also analyze the dynamic stability performance of train with yawing condition.The three-dimensional analytical method is introduced for analyzing the electromagnetic force characteristics of the linear synchronous motor with the yawing operation condition.Firstly,the topology structure and operation principle of the linear synchronous motor with yawing attitude are proposed.Secondly,the three-dimensional analytical model and expressions of electromagnetic characteristics are obtained by equivalent circuit method and Fourier decomposition method,such as levitation force,guidance force,propulsion force and yawing torque,etc.Finally,the three-dimensional electromagnetic characteristics of the linear synchronous motor are calculated under yawing operation conditions of maglev train,and the correctness of the analytical theory is verified by the finite element analysis and measured data on the test line.展开更多
High speed maglev train has become a new non-contact transportation mode mainly studied in recent years because of its non-sticking and high speed characteristics.Firstly,the finite element model of the long stator li...High speed maglev train has become a new non-contact transportation mode mainly studied in recent years because of its non-sticking and high speed characteristics.Firstly,the finite element model of the long stator linear synchronous motor(LSM)is established based on the structure of the test prototype.After calculation,it is compared with the experimental data and verified.On this basis,a field-circuit coupling model based on inverter circuit is established,and the influence of carrier wave ratio change on the output characteristics of LSM is calculated and analyzed.Finally,the filter circuit is introduced into the field-circuit coupling model,and the influence of the filter circuit on the output characteristics of the LSM is compared and analyzed.展开更多
Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the...Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the direction or magnitude of the field is changing rapidly,the smallest elements are demanded due to high accuracy to use adaptive meshing technique.The co-simulation was used with the status space functions and time-step finite element functions,in which time-step of the status space functions was the smallest than finite element functions'.The magnitude relation of the normal elec- tromagnetic force and tangential electromagnetic force and the period were attained,and current curve was very abrupt at current zero area due to the bigger resistance and leak- age reactance,including main characteristics of motor voltage and velocity.The simulation results compare triumphantly with the experiments results.展开更多
A permanent magnet linear synchronous motor (PMLSM) for a high temperature superconducting (HTS) maglev system has been studied, including the motor structure, control strategy, and analysis techniques. Finite ele...A permanent magnet linear synchronous motor (PMLSM) for a high temperature superconducting (HTS) maglev system has been studied, including the motor structure, control strategy, and analysis techniques. Finite element analysis (FEA) of magnetic field is conducted to accurately calculate major motor parameters. Equivalent electrical circuit is used to predict the drive's steady-state characteristics, and a phase variable model is applied to predict the dynamic performance. Preliminary experiment with a prototype has been made to verify the theoretical analysis and the HTS-PM synchronous driving technology.展开更多
The use of design method considering a coil temperature to maximize the thrust density of a double side coreless permanent magnet linear synchronous motor(PMLSM) was presented.The optimal current density where the coi...The use of design method considering a coil temperature to maximize the thrust density of a double side coreless permanent magnet linear synchronous motor(PMLSM) was presented.The optimal current density where the coil temperature reaches an allowable temperature with heat analysis was applied to a magnetic circuit design.Changing optimal current density is verified whenever the design parameters of the motor are altered.The design parameters of the motor were applied to thrust calculation.In this way,the optimal model,which is a reversal of the existing design method,is deduced.The results were compared with the experimental data to verify their validity.When the convection heat transfer coefficient is applied to other models,the results of the analysis and test values show good concordance.The method proposed has some limitations.展开更多
The detent force of a permanent magnet linear synchronous motor (PMLSM) is analyzed and the corresponding optimization methods are presented to reduce it. The detent force, which is divided into two components, i.e....The detent force of a permanent magnet linear synchronous motor (PMLSM) is analyzed and the corresponding optimization methods are presented to reduce it. The detent force, which is divided into two components, i.e. resulting from the end effect and resulting from the slotting effect, can be analyzed respectively by the finite element method (FEM). To reduce the detent force arising from the end effect, several optimal design techniques are utilized, namely, adopting the suitable length and end shape of the primary armature. The detent force resulting from the slotting effect is reduced by means of skewing and adjusting the width of the magnets mounted on the secondary armature, and adopting the fractional slots of the primary armature. The validity of the analytical detent force predictions and the effectiveness of the detent force reduction techniques are verified by the experimental measurements.展开更多
Recently,there is an increasing requirement for controlling linear motion up to a few hundred of millimeter strokes in the area of the liquid crystal display(LCD) production equipment.The requirements of the motion sy...Recently,there is an increasing requirement for controlling linear motion up to a few hundred of millimeter strokes in the area of the liquid crystal display(LCD) production equipment.The requirements of the motion system for LCD production equipment are high acceleration and high velocity with positioning accuracy.To satisfy these requirements,it has to be designed with the high-thrust force and low velocity ripple.In this work, high-thrust and double-sided linear synchronous motor (LSM)module is proposed and the developed high-thrust and double-sided LSM module is verified by performance test.展开更多
For permanent magnet linear synchronous motor(PMLSM) working at trapezoidal speed for long time, high thrust brings high temperature rise, while low thrust limits dynamic performance. Thus, it is crucial to find a bal...For permanent magnet linear synchronous motor(PMLSM) working at trapezoidal speed for long time, high thrust brings high temperature rise, while low thrust limits dynamic performance. Thus, it is crucial to find a balance between temperature rise and dynamic performance. In this paper, a velocity planning model of the PMLSM at trapezoidal speed based on electromagnetic-fluid-thermal(EFT) field is proposed to obtain the optimal dynamic performance under temperature limitation. In this model, the winding loss is calculated considering the acceleration and deceleration time. The loss model is indirectly verified by the temperature rise experiment of an annular winding sample. The actual working conditions of the PMLSM are simulated by dynamic grid technology to research the influence of acceleration and deceleration on fluid flow in the air gap, and the variation rule of the thermal boundary condition is analyzed. Combined with the above conditions, the temperature rise of a coreless PMLSM(CPMLSM) under the rated working condition is calculated and analyzed in detail. Through this method and several iterations, the optimal dynamic performance under the temperature limitation is achieved. The result is verified by a comparison between simulation and prototype tests, which can help improve the dynamic performance.展开更多
Recently, an interest in a hybrid system combining only the merits of the conventional wheel-rail system and Maglev propulsion system is growing as an alternative to high-speed maglev train. This hybrid-type system is...Recently, an interest in a hybrid system combining only the merits of the conventional wheel-rail system and Maglev propulsion system is growing as an alternative to high-speed maglev train. This hybrid-type system is based on wheel-rail method, but it enables to overcome the speed limitation by adhesion because it is operated through a non-contact method using a linear motor as a propulsion system and reduce the overall construction costs by its compatibility with the conventional railway systems. Therefore, a comparative analysis on electromagnetic characteristics according to the structural combinations on the stator-mover of LSM (linear synchronous motor) for VHST (very high speed train) maintaining the conventional wheel-rail method is conducted, and the structure of coreless superconducting LSM suitable for 600 km/h VHST is finally proposed in this paper.展开更多
In this paper, a simulation model of Permanent Magnet Linear Synchronous Motor (PMLSM) is established by using phase equations method. Special attention is paid to its structure and the influence of longitudinal end e...In this paper, a simulation model of Permanent Magnet Linear Synchronous Motor (PMLSM) is established by using phase equations method. Special attention is paid to its structure and the influence of longitudinal end effect and the unbalance of current. The analytic method can be used for the analysis of dynamic and static characteristics of PMLSM.展开更多
A robustness-tracking control scheme based on combining H_∞ robust control and sliding mode control is proposed for a direct drive AC permanent-magnet linear motor servo system to solve the conflict between tracking ...A robustness-tracking control scheme based on combining H_∞ robust control and sliding mode control is proposed for a direct drive AC permanent-magnet linear motor servo system to solve the conflict between tracking and robustness of the linear servo system. The sliding mode tracking controller is designed to ensure the system has a fast tracking characteristic to the command, and the H_∞ robustness controller suppresses the disturbances well within the close loop(including the load and the end effect force of linear motor etc.) and effectively minimizes the chattering of sliding mode control which influences the steady state performance of the system. Simulation results show that this control scheme enhances the track-command-ability and the robustness of the linear servo system, and in addition, it has a strong robustness to parameter variations and resistance disturbances.展开更多
An adaptive repetitive control scheme is presented for a class of nonlinearly parameterized systems based on the fuzzy basis function network (FBFN). The parameters of the fuzzy rules are tuned with adaptive schemes...An adaptive repetitive control scheme is presented for a class of nonlinearly parameterized systems based on the fuzzy basis function network (FBFN). The parameters of the fuzzy rules are tuned with adaptive schemes. To attenuate chattering effectively, the discontinuous control term is approximated by an adaptive PI control structure. The bound of the discontinuous control term is assumed to be unknown and estimated by an adaptive mechanism. Based on the Lyapunov stability theory, an adaptive repetitive control law is proposed to guarantee the closed-loop stability and the tracking performance. By means of FBFNs, which avoid the nonlinear parameterization from entering into the adaptive repetitive control, the controller singularity problem is solved. The proposed approach does not require an exact structure of the system dynamics, and the proposed controller is utilized to control a model of permanent-magnet linear synchronous motor subject to significant disturbances and parameter uncertainties. The simulation results demonstrate the effectiveness of the proposed method.展开更多
An optimal configuration of the flux-reversal linear synchronous motor (FRLSM) with the optimal number of attachment permanent magnets (PMs) was presented. The optimal model of 2 000 N was designed to reduce the deten...An optimal configuration of the flux-reversal linear synchronous motor (FRLSM) with the optimal number of attachment permanent magnets (PMs) was presented. The optimal model of 2 000 N was designed to reduce the detent force by redesigning the air-gap structure and skewing. The design parameters,mover PMs and stator core,were selected for optimal design by DOE. The thrust and the detent force of the designed optimal models were compared by finite element analysis (FEA). As a result,the thrust of the optimal model is slightly decreased by 1.97% compared with the basic model,and the detent force of the optimal model is greatly decreased by 88.47% compared with the basic model.展开更多
基金This work has been partly supported in part by National Natural Science Foundation of China under Grants 51877093 and 51707079in part by the National Key Research and Development Program of China under Grant YS2018YFGH000200,in part by the Key Technical Innovation Program of Hubei Province under Grant 2019AAA026.
文摘Permanent magnet linear synchronous motor(PMLSM)has the advantages of high thrust density and good control accuracy,which can be applied in high-power and high-speed occasions.In this paper,the analytical models are established to obtain the electromagnetic performance for the PMLSMs with dual secondaries and dual primaries.The air-gap flux density and the electromagnetic thrust are also obtained by the finite element model to verify theoretical analysis.Besides,an improved structure is also put forward in order to suppress the thrust fluctuation of the PMLSM.Finally,the advantages and disadvantages of two PMLSMs topologies are listed.These analyses would provide a guide for the design of PMLSMs applied in high-power and high-speed occasions.
基金the National Natural Science Foundation of China(Nos.61374043 and 61603392)the China Postdoctoral Science Foundation Funded Project(Nos.2013M530278 and 2014T70558)
文摘This paper presents a method for compensating the force ripple in permanent magnet linear synchronous motors(PMLSMs)by adopting a composite feedforward compensation scheme.Firstly,the vector control system of PMLSMs is described,and various force disturbances influencing the electromagnetic thrust are analyzed.As a result,the mathematical model of the whole system considering the force ripple is established.Then,a novel composite feedforward compensation scheme is proposed,which consists of a recursive least squares(RLS)parameter identification component and two feedforward compensation loops corresponding to the reference position trajectory and the force ripple,respectively.Finally,the effectiveness and advantages of the proposed composite feedforward compensation are demonstrated by simulation.The main incentive of this paper is the combination with the composite feedforward compensation loop corresponding to the reference position trajectory to improve the compensation effect of force ripple in PMLSMs.
基金supported in part by National Natural Science Foundation of China(52177194)in part by State Key Laboratory of Large Electric Drive System and Equipment Technology(SKLLDJ012016006)+1 种基金in part by Key Research and Development Project of ShaanXi Province(2019GY-060)in part by Key Laboratory of Industrial Automation in ShaanXi Province(SLGPT2019KF01-12)(。
文摘In this paper,a compound sliding mode velocity control scheme with a new exponential reaching law(NERL)with thrust ripple observation strategy is proposed to obtain a high performance velocity loop of the linear permanent magnet synchronous motor(LPMSM)control system.A sliding mode velocity controller based on NERL is firstly discussed to restrain chattering of the conventional exponential reaching law(CERL).Furthermore,the unavoidable thrust ripple caused by the special structure of linear motor will bring about velocity fluctuation and reduced control performance.Thus,a thrust ripple compensation strategy on the basis of extend Kalman filter(EKF)theory is proposed.The estimated thrust ripple will be introduced into the sliding mode velocity controller to optimize the control accuracy and robustness.The effectiveness of the proposal is validated with experimental results.
文摘To guarantee the safety of the high speed maglev train system, a novel model based on the winding function theory is proposed for the long-stator linear synchronous motor(LSM), which is suitable for the real-time calculation of the running state. The accurate coupled mathematical models under different internal fault conditions of the LSM are derived based on the normal model. Then the fault currents and electromagnetic forces are simulated and calculated for the major potential internal faults of the LSM, such as the single-phase short circuit, the phase-phase short circuit and the single-phase open circuit. The characteristic curve between the electromagnetic force and the armature current of the LSM, which is compared with the results from the finite element method, proves the validation of the proposed method. The fault rule is determined and the proposed analytical model also shows its feasibility in the fast fault diagnosis through the comparison of the simulation results of currents and electromagnetic forces under different internal fault types and short circuit ratios.
基金Project (No. 50607016) supported by the National Natural ScienceFoundation of China
文摘A novel elevator door driven by tubular permanent magnet linear synchronous motor (TPMLSM) is presented. This TPMLSM applies axial magnet array topology of the secondary rod, air-cored armature windings and slotless structure of the forcer to improve the stability of the thrust. The influence of two major dimensions, the pitch and radius of the permanent magnet (PM), on magnetic field was studied and the best values were given by the finite element analysis (FEA). The magnetic field, back EMF and thrust of the motor were analyzed and the PM size was optimized to reduce the harmonic components of the magnetic field and improve the performance of the motor. Predicted results are validated by the experiment. It is shown that the performance of the motor and the novel elevator door system is satisfying.
基金supported by the Second Stage of Brain Korea 21 Projects and Changwon National University in 2009-2010
文摘A discontinuity of magnetic circuits according to the end effect is generated in the permanent magnet linear synchronous motor (PMLSM). Due to the unbalanced back electro-motive force (EMF) and impedance produced, unbalanced current is generated. The cireulatin8 current, which is caused by a decrease in the thrust, is generated by the unbalanced current. The optimal design of auxiliary-teeth at the end of the mover was carried out to solve the unbalance of phase by using design of experiment (DOE), and compared with the basic model through finite element analysis (FEA). As a result, the auxiliary-teeth model compensates for the decrease of thrust caused by the unbalanced phase. Also, this model is proven to reduce the detent force by the vibration and noise of the PMLSM and copper loss caused by the circulating current.
文摘In this paper, with the non-salient pole permanent magnet linear synchronous motor (PMLSM)being cited, by using Fourier transform method and "slot-by-slot", "pole -by-pole" current approach, a 3D electromagnetic field model of PMLSM is established. Special attention is paid to its structure and the influence of longitudinal and transverse end effect. The distribution of electromagnetic field of PMLSM can be obtained directly and promptly by using FFT algorithm. It can also be used for the analysis of other LSM.
基金supported in part by the National Natural Science Foundation of China under Grant 52077003 and 51777009。
文摘Dynamic stability analysis of superconducting electro-dynamic maglev train under lateral and yawing motion condition is the key research content.The novel three-dimensional electromagnetic model of integrated linear synchronous motor in electro-dynamic maglev train with yawing operation condition is proposed,which can not only simultaneously achieve the propulsion,levitation and guidance performances of maglev vehicle,but also analyze the dynamic stability performance of train with yawing condition.The three-dimensional analytical method is introduced for analyzing the electromagnetic force characteristics of the linear synchronous motor with the yawing operation condition.Firstly,the topology structure and operation principle of the linear synchronous motor with yawing attitude are proposed.Secondly,the three-dimensional analytical model and expressions of electromagnetic characteristics are obtained by equivalent circuit method and Fourier decomposition method,such as levitation force,guidance force,propulsion force and yawing torque,etc.Finally,the three-dimensional electromagnetic characteristics of the linear synchronous motor are calculated under yawing operation conditions of maglev train,and the correctness of the analytical theory is verified by the finite element analysis and measured data on the test line.
文摘High speed maglev train has become a new non-contact transportation mode mainly studied in recent years because of its non-sticking and high speed characteristics.Firstly,the finite element model of the long stator linear synchronous motor(LSM)is established based on the structure of the test prototype.After calculation,it is compared with the experimental data and verified.On this basis,a field-circuit coupling model based on inverter circuit is established,and the influence of carrier wave ratio change on the output characteristics of LSM is calculated and analyzed.Finally,the filter circuit is introduced into the field-circuit coupling model,and the influence of the filter circuit on the output characteristics of the LSM is compared and analyzed.
基金National Natural Sciences Foundation(60474043)Henan Province Science Fund for Distinguished Young Scholars(0412002200)Henan Province Major Projects(0223025300)
文摘Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the direction or magnitude of the field is changing rapidly,the smallest elements are demanded due to high accuracy to use adaptive meshing technique.The co-simulation was used with the status space functions and time-step finite element functions,in which time-step of the status space functions was the smallest than finite element functions'.The magnitude relation of the normal elec- tromagnetic force and tangential electromagnetic force and the period were attained,and current curve was very abrupt at current zero area due to the bigger resistance and leak- age reactance,including main characteristics of motor voltage and velocity.The simulation results compare triumphantly with the experiments results.
文摘A permanent magnet linear synchronous motor (PMLSM) for a high temperature superconducting (HTS) maglev system has been studied, including the motor structure, control strategy, and analysis techniques. Finite element analysis (FEA) of magnetic field is conducted to accurately calculate major motor parameters. Equivalent electrical circuit is used to predict the drive's steady-state characteristics, and a phase variable model is applied to predict the dynamic performance. Preliminary experiment with a prototype has been made to verify the theoretical analysis and the HTS-PM synchronous driving technology.
基金Work supported by the Second Stage of Brain Korea 21 ProjectsChangwon National University in 2009-2010
文摘The use of design method considering a coil temperature to maximize the thrust density of a double side coreless permanent magnet linear synchronous motor(PMLSM) was presented.The optimal current density where the coil temperature reaches an allowable temperature with heat analysis was applied to a magnetic circuit design.Changing optimal current density is verified whenever the design parameters of the motor are altered.The design parameters of the motor were applied to thrust calculation.In this way,the optimal model,which is a reversal of the existing design method,is deduced.The results were compared with the experimental data to verify their validity.When the convection heat transfer coefficient is applied to other models,the results of the analysis and test values show good concordance.The method proposed has some limitations.
基金supported by the National Natural Science Foundation of China (Grant No.60474021)
文摘The detent force of a permanent magnet linear synchronous motor (PMLSM) is analyzed and the corresponding optimization methods are presented to reduce it. The detent force, which is divided into two components, i.e. resulting from the end effect and resulting from the slotting effect, can be analyzed respectively by the finite element method (FEM). To reduce the detent force arising from the end effect, several optimal design techniques are utilized, namely, adopting the suitable length and end shape of the primary armature. The detent force resulting from the slotting effect is reduced by means of skewing and adjusting the width of the magnets mounted on the secondary armature, and adopting the fractional slots of the primary armature. The validity of the analytical detent force predictions and the effectiveness of the detent force reduction techniques are verified by the experimental measurements.
基金supported by the ministry of education,science technology [MEST] and the ministry of knowledge economy [MKE] through the fostering project of the industrial-academic cooperation centered university.
文摘Recently,there is an increasing requirement for controlling linear motion up to a few hundred of millimeter strokes in the area of the liquid crystal display(LCD) production equipment.The requirements of the motion system for LCD production equipment are high acceleration and high velocity with positioning accuracy.To satisfy these requirements,it has to be designed with the high-thrust force and low velocity ripple.In this work, high-thrust and double-sided linear synchronous motor (LSM)module is proposed and the developed high-thrust and double-sided LSM module is verified by performance test.
基金supported in part by the National Natural Science Foundation of China under Grant 52022040in part by the Postgraduate Research&Practice Innovation Program of NUAA。
文摘For permanent magnet linear synchronous motor(PMLSM) working at trapezoidal speed for long time, high thrust brings high temperature rise, while low thrust limits dynamic performance. Thus, it is crucial to find a balance between temperature rise and dynamic performance. In this paper, a velocity planning model of the PMLSM at trapezoidal speed based on electromagnetic-fluid-thermal(EFT) field is proposed to obtain the optimal dynamic performance under temperature limitation. In this model, the winding loss is calculated considering the acceleration and deceleration time. The loss model is indirectly verified by the temperature rise experiment of an annular winding sample. The actual working conditions of the PMLSM are simulated by dynamic grid technology to research the influence of acceleration and deceleration on fluid flow in the air gap, and the variation rule of the thermal boundary condition is analyzed. Combined with the above conditions, the temperature rise of a coreless PMLSM(CPMLSM) under the rated working condition is calculated and analyzed in detail. Through this method and several iterations, the optimal dynamic performance under the temperature limitation is achieved. The result is verified by a comparison between simulation and prototype tests, which can help improve the dynamic performance.
文摘Recently, an interest in a hybrid system combining only the merits of the conventional wheel-rail system and Maglev propulsion system is growing as an alternative to high-speed maglev train. This hybrid-type system is based on wheel-rail method, but it enables to overcome the speed limitation by adhesion because it is operated through a non-contact method using a linear motor as a propulsion system and reduce the overall construction costs by its compatibility with the conventional railway systems. Therefore, a comparative analysis on electromagnetic characteristics according to the structural combinations on the stator-mover of LSM (linear synchronous motor) for VHST (very high speed train) maintaining the conventional wheel-rail method is conducted, and the structure of coreless superconducting LSM suitable for 600 km/h VHST is finally proposed in this paper.
文摘In this paper, a simulation model of Permanent Magnet Linear Synchronous Motor (PMLSM) is established by using phase equations method. Special attention is paid to its structure and the influence of longitudinal end effect and the unbalance of current. The analytic method can be used for the analysis of dynamic and static characteristics of PMLSM.
文摘A robustness-tracking control scheme based on combining H_∞ robust control and sliding mode control is proposed for a direct drive AC permanent-magnet linear motor servo system to solve the conflict between tracking and robustness of the linear servo system. The sliding mode tracking controller is designed to ensure the system has a fast tracking characteristic to the command, and the H_∞ robustness controller suppresses the disturbances well within the close loop(including the load and the end effect force of linear motor etc.) and effectively minimizes the chattering of sliding mode control which influences the steady state performance of the system. Simulation results show that this control scheme enhances the track-command-ability and the robustness of the linear servo system, and in addition, it has a strong robustness to parameter variations and resistance disturbances.
基金supported by the National Natural Science Foundation of China (61203041)the Chinese National Post-doctor Science Foundation (2011M500217)
文摘An adaptive repetitive control scheme is presented for a class of nonlinearly parameterized systems based on the fuzzy basis function network (FBFN). The parameters of the fuzzy rules are tuned with adaptive schemes. To attenuate chattering effectively, the discontinuous control term is approximated by an adaptive PI control structure. The bound of the discontinuous control term is assumed to be unknown and estimated by an adaptive mechanism. Based on the Lyapunov stability theory, an adaptive repetitive control law is proposed to guarantee the closed-loop stability and the tracking performance. By means of FBFNs, which avoid the nonlinear parameterization from entering into the adaptive repetitive control, the controller singularity problem is solved. The proposed approach does not require an exact structure of the system dynamics, and the proposed controller is utilized to control a model of permanent-magnet linear synchronous motor subject to significant disturbances and parameter uncertainties. The simulation results demonstrate the effectiveness of the proposed method.
基金Work supported by the Second Stage of Brain Korea 21 Projects
文摘An optimal configuration of the flux-reversal linear synchronous motor (FRLSM) with the optimal number of attachment permanent magnets (PMs) was presented. The optimal model of 2 000 N was designed to reduce the detent force by redesigning the air-gap structure and skewing. The design parameters,mover PMs and stator core,were selected for optimal design by DOE. The thrust and the detent force of the designed optimal models were compared by finite element analysis (FEA). As a result,the thrust of the optimal model is slightly decreased by 1.97% compared with the basic model,and the detent force of the optimal model is greatly decreased by 88.47% compared with the basic model.