We analyze the existence and uniqueness of the optimal control for a class of exactly controllable linear systems. We are interested in the minimization of time, energy and final manifold in transfer problems. The sta...We analyze the existence and uniqueness of the optimal control for a class of exactly controllable linear systems. We are interested in the minimization of time, energy and final manifold in transfer problems. The state variables space X and, respectively, the control variables space U, are considered to be Hilbert spaces. The linear operator T(t) which defines the solution of the linear control system is a strong semigroup. Our analysis is based on some results from the theory of linear operators and functional analysis. The results obtained in this paper are based on the properties of linear operators and on some theorems from functional analysis.展开更多
This paper considers the optimal control problem for the bilinear system based on state feedback. Based on the concept of relative order of the output with respect to the input, first we change a bilinear system to a ...This paper considers the optimal control problem for the bilinear system based on state feedback. Based on the concept of relative order of the output with respect to the input, first we change a bilinear system to a pseudo linear system model through the coordinate transformation. Then based on the theory of linear quadratic optimal control, the optimal controller is designed by solving the Riccati equation and introducing state feedback with state prediction. At last, the simulation results in CSTR Chemical reactor show the effectiveness of the method.展开更多
Safety critical control is often trained in a simulated environment to mitigate risk.Subsequent migration of the biased controller requires further adjustments.In this paper,an experience inference human-behavior lear...Safety critical control is often trained in a simulated environment to mitigate risk.Subsequent migration of the biased controller requires further adjustments.In this paper,an experience inference human-behavior learning is proposed to solve the migration problem of optimal controllers applied to real-world nonlinear systems.The approach is inspired in the complementary properties that exhibits the hippocampus,the neocortex,and the striatum learning systems located in the brain.The hippocampus defines a physics informed reference model of the realworld nonlinear system for experience inference and the neocortex is the adaptive dynamic programming(ADP)or reinforcement learning(RL)algorithm that ensures optimal performance of the reference model.This optimal performance is inferred to the real-world nonlinear system by means of an adaptive neocortex/striatum control policy that forces the nonlinear system to behave as the reference model.Stability and convergence of the proposed approach is analyzed using Lyapunov stability theory.Simulation studies are carried out to verify the approach.展开更多
The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear sy...The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear system into a linear one and an optimal LQR is designed for the corresponding nominal system. Then, based on the integral sliding mode, a design approach to robustifying the optimal regulator is studied. As a result, the system exhibits global robustness to uncertainties and the ideal sliding mode dynamics is the same as that of the optimal LQR for the nominal system. A global robust optimal sliding mode control (GROSMC) is realized. Finally, a numerical simulation is demonstrated to show the effectiveness and superiority of the proposed algorithm compared with the conventional optimal LQR.展开更多
The optimal control problem was studied for linear time-varying systems,which was affected by external persistent disturbances with known dynamic characteristics but unknown initial conditions. To damp the effect of d...The optimal control problem was studied for linear time-varying systems,which was affected by external persistent disturbances with known dynamic characteristics but unknown initial conditions. To damp the effect of disturbances in an optimal fashion,we obtained a new feedforward and feedback optimal control law and gave the control algorithm by solving a Riccati differential equation and a matrix differential equation. Simulation results showed that the achieved optimal control law was realizable,efficient and robust to reject the external disturbances.展开更多
This paper considers the optimal control problem for time-delay bilinear systems affected by sinusoidal disturbances with known frequency and measurable amplitude and phase. Firstly, using the differential homeomorphi...This paper considers the optimal control problem for time-delay bilinear systems affected by sinusoidal disturbances with known frequency and measurable amplitude and phase. Firstly, using the differential homeomorphism, a time-delay bilinear system affected by sinusoidal disturbances is changed to a time-delay pseudo linear system through the coordinate transformation. Then the system with time-delay in control variable is transformed to a linear controllable system without delay using model transformation. At last based on the theory of linear quadratic optimal control, an optimal control law which is used to eliminate the influence of the disturbances is derived from a Riccati equation and Matrix equations. The simulation results show the effectiveness of the method.展开更多
This paper focuses on linear-quadratic(LQ)optimal control for a class of systems governed by first-order hyperbolic partial differential equations(PDEs).Different from most of the previous works,an approach of discret...This paper focuses on linear-quadratic(LQ)optimal control for a class of systems governed by first-order hyperbolic partial differential equations(PDEs).Different from most of the previous works,an approach of discretization-then-continuousization is proposed in this paper to cope with the infinite-dimensional nature of PDE systems.The contributions of this paper consist of the following aspects:(1)The differential Riccati equations and the solvability condition of the LQ optimal control problems are obtained via the discretization-then-continuousization method.(2)A numerical calculation way of the differential Riccati equations and a practical design way of the optimal controller are proposed.Meanwhile,the relationship between the optimal costate and the optimal state is established by solving a set of forward and backward partial difference equations(FBPDEs).(3)The correctness of the method used in this paper is verified by a complementary continuous method and the comparative analysis with the existing operator results is presented.It is shown that the proposed results not only contain the classic results of the standard LQ control problem of systems governed by ordinary differential equations as a special case,but also support the existing operator results and give a more convenient form of computation.展开更多
Designing a robust controller for a system with timevarying delays poses a major challenge. In this paper, we propose a method based on mixed sensitivity H∞ for the control of linear time invariant(LTI) systems wit...Designing a robust controller for a system with timevarying delays poses a major challenge. In this paper, we propose a method based on mixed sensitivity H∞ for the control of linear time invariant(LTI) systems with varying time delays. The time delay is assumed bounded and the upper bound is known. In the technique we propose, the delay affecting the plant to be controlled is treated as an unmodeled uncertainty(in form of multiplicative uncertainty). That uncertainty is approximated and then an H∞based controller, for the plant represented by the multiplicative uncertainty and the nominal model, is calculated. The obtained H∞controller is used to control the LTI systems with varying time delays. Simulation examples are given to illustrate the effectiveness of the proposed method.展开更多
This paper presents a global optimization approach to solving linear non-quadratic optimal control problems. The main work is to construct a differential flow for finding a global minimizer of the Hamiltonian function...This paper presents a global optimization approach to solving linear non-quadratic optimal control problems. The main work is to construct a differential flow for finding a global minimizer of the Hamiltonian function over a Euclid space. With the Pontryagin principle, the optimal control is characterized by a function of the adjoint variable and is obtained by solving a Hamiltonian differential boundary value problem. For computing an optimal control, an algorithm for numerical practice is given with the description of an example.展开更多
A parametric variational principle and the corresponding numerical algo- rithm are proposed to solve a linear-quadratic (LQ) optimal control problem with control inequality constraints. Based on the parametric varia...A parametric variational principle and the corresponding numerical algo- rithm are proposed to solve a linear-quadratic (LQ) optimal control problem with control inequality constraints. Based on the parametric variational principle, this control prob- lem is transformed into a set of Hamiltonian canonical equations coupled with the linear complementarity equations, which are solved by a linear complementarity solver in the discrete-time domain. The costate variable information is also evaluated by the proposed method. The parametric variational algorithm proposed in this paper is suitable for both time-invariant and time-varying systems. Two numerical examples are used to test the validity of the proposed method. The proposed algorithm is used to astrodynamics to solve a practical optimal control problem for rendezvousing spacecrafts with a finite low thrust. The numerical simulations show that the parametric variational algorithm is ef- fective for LQ optimal control problems with control inequality constraints.展开更多
In this paper, an efficient computational approach is proposed to solve the discrete time nonlinear stochastic optimal control problem. For this purpose, a linear quadratic regulator model, which is a linear dynamical...In this paper, an efficient computational approach is proposed to solve the discrete time nonlinear stochastic optimal control problem. For this purpose, a linear quadratic regulator model, which is a linear dynamical system with the quadratic criterion cost function, is employed. In our approach, the model-based optimal control problem is reformulated into the input-output equations. In this way, the Hankel matrix and the observability matrix are constructed. Further, the sum squares of output error is defined. In these point of views, the least squares optimization problem is introduced, so as the differences between the real output and the model output could be calculated. Applying the first-order derivative to the sum squares of output error, the necessary condition is then derived. After some algebraic manipulations, the optimal control law is produced. By substituting this control policy into the input-output equations, the model output is updated iteratively. For illustration, an example of the direct current and alternating current converter problem is studied. As a result, the model output trajectory of the least squares solution is close to the real output with the smallest sum squares of output error. In conclusion, the efficiency and the accuracy of the approach proposed are highly presented.展开更多
The authors give a stochastic maximum principle for square-integrable optimal control of linear stochastic systems.The control domain is not necessarily convex and the cost functional can have a quadratic growth.In pa...The authors give a stochastic maximum principle for square-integrable optimal control of linear stochastic systems.The control domain is not necessarily convex and the cost functional can have a quadratic growth.In particular,they give a stochastic maximum principle for the linear quadratic optimal control problem.展开更多
For a SlSO linear discrete-time system with a specified input signal, a novel method to realize optimal l1 regulation control is presented. Utilizing the technique of converting a polynomial equation to its correspond...For a SlSO linear discrete-time system with a specified input signal, a novel method to realize optimal l1 regulation control is presented. Utilizing the technique of converting a polynomial equation to its corresponding matrix equation, a linear programming problem to get an optimal l1 norm of the system output error map is developed which includes the first term and the last term of the map sequence in the objective function and the right vector of its constraint matrix equation, respectively. The adjustability for the width of the constraint matrix makes the trade-off between the order of the optimal regulator and the value of the minimum objective norm become possible, especially for achieving the optimal regulator with minimum order. By norm scaling rules for the constraint matrix equation, the optimal solution can be scaled directly or be obtained by solving a linear programming problem with l1 norm objective.展开更多
The suppression of linear transient growth in turbulent channel flows via linear optimal controls is investigated. The control algorithms are the LQR control based on full information of flow fields and the LQG contro...The suppression of linear transient growth in turbulent channel flows via linear optimal controls is investigated. The control algorithms are the LQR control based on full information of flow fields and the LQG control based on the information measured at walls. The influence of these controls on the development of small-scale and large-scale perturbations are considered respectively. It is found that the energy amplification of large-scale perturbations is suppressed significantly by both LQR and LQG control, while small-scale perturbations can be only affect by LQR control. Effects of the weighting parameters and control price on the control performance of both controls are analysed. It turns out that the different weighting parameters in cost function do not qualitatively change the evalution of control performance. As control price raises, the effectiveness of both controls decreases distinctly. For small-scale perturbations, the upper limit of the effective range of control price is lower than that for large-scale perturbations. As Reynolds number increases, it indicates that both LQR and LQG control get more effective on suppressing the energy amplification of large-scale perturbations.展开更多
In this paper, a new approach using linear combination property of intervals and discretization is proposed to solve a class of nonlinear optimal control problems, containing a nonlinear system and linear functional, ...In this paper, a new approach using linear combination property of intervals and discretization is proposed to solve a class of nonlinear optimal control problems, containing a nonlinear system and linear functional, in three phases. In the first phase, using linear combination property of intervals, changes nonlinear system to an equivalent linear system, in the second phase, using discretization method, the attained problem is converted to a linear programming problem, and in the third phase, the latter problem will be solved by linear programming methods. In addition, efficiency of our approach is confirmed by some numerical examples.展开更多
We consider optimal control problems for the flow of gas in a pipe network. The equations of motions are taken to be represented by a semi-linear model derived from the fully nonlinear isothermal Euler gas equations. ...We consider optimal control problems for the flow of gas in a pipe network. The equations of motions are taken to be represented by a semi-linear model derived from the fully nonlinear isothermal Euler gas equations. We formulate an optimal control problem on a given network and introduce a time discretization thereof. We then study the well-posedness of the corresponding time-discrete optimal control problem. In order to further reduce the complexity, we consider an instantaneous control strategy. The main part of the paper is concerned with a non-overlapping domain decomposition of the semi-linear elliptic optimal control problem on the graph into local problems on a small part of the network, ultimately on a single edge.展开更多
The optimal control problem with a long run average cost is investigated for unknown linear discrete-time systems with additive noise.The authors propose a value iteration-based stochastic adaptive dynamic programming...The optimal control problem with a long run average cost is investigated for unknown linear discrete-time systems with additive noise.The authors propose a value iteration-based stochastic adaptive dynamic programming(VI-based SADP)algorithm,based on which the optimal controller is obtained.Different from the existing relevant work,the algorithm does not need to estimate the expectation(conditional expectation)and variance(conditional variance)of states or other relevant variables,and the convergence of the algorithm can be proved rigorously.A simulation example is given to verify the effectiveness of the proposed approach.展开更多
Anthrax is an infection caused by bacteria and it affects both human and animal populations. The disease can be categorized under zoonotic diseases and humans can contract infections through contact with infected anim...Anthrax is an infection caused by bacteria and it affects both human and animal populations. The disease can be categorized under zoonotic diseases and humans can contract infections through contact with infected animals, ingest contaminated dairy and animal products. In this paper, we developed a mathematical model for anthrax transmission dynamics in both human and animal populations with optimal control. The qualitative solution of the model behaviour was analyzed by determining Rhv, equilibrium points and sensitivity analysis. A vaccination class was incorporated into the model with waning immunity. Local and global stability of the model’s equilibria was found to be locally asymptotically stable whenever Rhv Rhv. It was revealed that reducing animal and human interaction rate, would decrease Rhv. We extended the model to optimal control in order to find the best control strategy in reducing anthrax infections. It showed that the effective strategy in combating the anthrax epidemics is vaccination of animals and prevention of humans.展开更多
文摘We analyze the existence and uniqueness of the optimal control for a class of exactly controllable linear systems. We are interested in the minimization of time, energy and final manifold in transfer problems. The state variables space X and, respectively, the control variables space U, are considered to be Hilbert spaces. The linear operator T(t) which defines the solution of the linear control system is a strong semigroup. Our analysis is based on some results from the theory of linear operators and functional analysis. The results obtained in this paper are based on the properties of linear operators and on some theorems from functional analysis.
文摘This paper considers the optimal control problem for the bilinear system based on state feedback. Based on the concept of relative order of the output with respect to the input, first we change a bilinear system to a pseudo linear system model through the coordinate transformation. Then based on the theory of linear quadratic optimal control, the optimal controller is designed by solving the Riccati equation and introducing state feedback with state prediction. At last, the simulation results in CSTR Chemical reactor show the effectiveness of the method.
基金supported by the Royal Academy of Engineering and the Office of the Chie Science Adviser for National Security under the UK Intelligence Community Postdoctoral Research Fellowship programme。
文摘Safety critical control is often trained in a simulated environment to mitigate risk.Subsequent migration of the biased controller requires further adjustments.In this paper,an experience inference human-behavior learning is proposed to solve the migration problem of optimal controllers applied to real-world nonlinear systems.The approach is inspired in the complementary properties that exhibits the hippocampus,the neocortex,and the striatum learning systems located in the brain.The hippocampus defines a physics informed reference model of the realworld nonlinear system for experience inference and the neocortex is the adaptive dynamic programming(ADP)or reinforcement learning(RL)algorithm that ensures optimal performance of the reference model.This optimal performance is inferred to the real-world nonlinear system by means of an adaptive neocortex/striatum control policy that forces the nonlinear system to behave as the reference model.Stability and convergence of the proposed approach is analyzed using Lyapunov stability theory.Simulation studies are carried out to verify the approach.
基金supported by the Doctoral Foundation of Qingdao University of Science and Technology(0022330).
文摘The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear system into a linear one and an optimal LQR is designed for the corresponding nominal system. Then, based on the integral sliding mode, a design approach to robustifying the optimal regulator is studied. As a result, the system exhibits global robustness to uncertainties and the ideal sliding mode dynamics is the same as that of the optimal LQR for the nominal system. A global robust optimal sliding mode control (GROSMC) is realized. Finally, a numerical simulation is demonstrated to show the effectiveness and superiority of the proposed algorithm compared with the conventional optimal LQR.
基金the National Natural Science Foundation of China (Grant No.60074001)the Natural Science Foundation of Shandong Province (Grant No.Y2000G02).
文摘The optimal control problem was studied for linear time-varying systems,which was affected by external persistent disturbances with known dynamic characteristics but unknown initial conditions. To damp the effect of disturbances in an optimal fashion,we obtained a new feedforward and feedback optimal control law and gave the control algorithm by solving a Riccati differential equation and a matrix differential equation. Simulation results showed that the achieved optimal control law was realizable,efficient and robust to reject the external disturbances.
文摘This paper considers the optimal control problem for time-delay bilinear systems affected by sinusoidal disturbances with known frequency and measurable amplitude and phase. Firstly, using the differential homeomorphism, a time-delay bilinear system affected by sinusoidal disturbances is changed to a time-delay pseudo linear system through the coordinate transformation. Then the system with time-delay in control variable is transformed to a linear controllable system without delay using model transformation. At last based on the theory of linear quadratic optimal control, an optimal control law which is used to eliminate the influence of the disturbances is derived from a Riccati equation and Matrix equations. The simulation results show the effectiveness of the method.
基金National Natural Science Foundation of P. R. China (50477042)Ph. D. Programs Foundation of Ministry of Education of P.R.China (20040422052)the Natural Science Foundation of Shandong Province (Z2004G04)
基金supported by National Natural Science Foundation of China(61403254,61374039,61203143)Shanghai Pujiang Program(13PJ1406300)+2 种基金Natural Science Foundation of Shanghai City(13ZR1428500)Innovation Program of Shanghai Municipal Education Commission(14YZ083)Hujiang Foundation of China(C14002,B1402/D1402)
基金supported by the National Natural Science Foundation of China under Grant Nos.61821004 and 62250056the Natural Science Foundation of Shandong Province under Grant Nos.ZR2021ZD14 and ZR2021JQ24+1 种基金Science and Technology Project of Qingdao West Coast New Area under Grant Nos.2019-32,2020-20,2020-1-4,High-level Talent Team Project of Qingdao West Coast New Area under Grant No.RCTDJC-2019-05Key Research and Development Program of Shandong Province under Grant No.2020CXGC01208.
文摘This paper focuses on linear-quadratic(LQ)optimal control for a class of systems governed by first-order hyperbolic partial differential equations(PDEs).Different from most of the previous works,an approach of discretization-then-continuousization is proposed in this paper to cope with the infinite-dimensional nature of PDE systems.The contributions of this paper consist of the following aspects:(1)The differential Riccati equations and the solvability condition of the LQ optimal control problems are obtained via the discretization-then-continuousization method.(2)A numerical calculation way of the differential Riccati equations and a practical design way of the optimal controller are proposed.Meanwhile,the relationship between the optimal costate and the optimal state is established by solving a set of forward and backward partial difference equations(FBPDEs).(3)The correctness of the method used in this paper is verified by a complementary continuous method and the comparative analysis with the existing operator results is presented.It is shown that the proposed results not only contain the classic results of the standard LQ control problem of systems governed by ordinary differential equations as a special case,but also support the existing operator results and give a more convenient form of computation.
文摘Designing a robust controller for a system with timevarying delays poses a major challenge. In this paper, we propose a method based on mixed sensitivity H∞ for the control of linear time invariant(LTI) systems with varying time delays. The time delay is assumed bounded and the upper bound is known. In the technique we propose, the delay affecting the plant to be controlled is treated as an unmodeled uncertainty(in form of multiplicative uncertainty). That uncertainty is approximated and then an H∞based controller, for the plant represented by the multiplicative uncertainty and the nominal model, is calculated. The obtained H∞controller is used to control the LTI systems with varying time delays. Simulation examples are given to illustrate the effectiveness of the proposed method.
文摘This paper presents a global optimization approach to solving linear non-quadratic optimal control problems. The main work is to construct a differential flow for finding a global minimizer of the Hamiltonian function over a Euclid space. With the Pontryagin principle, the optimal control is characterized by a function of the adjoint variable and is obtained by solving a Hamiltonian differential boundary value problem. For computing an optimal control, an algorithm for numerical practice is given with the description of an example.
基金supported by the National Natural Science Foundation of China(Nos.11102031 and 11272076)the Fundamental Research Funds for Central Universities(No.DUT13LK25)+2 种基金the Key Laboratory Fund of Liaoning Province(No.L2013015)the China Postdoctoral Science Foundation(No.2014M550155)the State Key Laboratory of Mechanics and Control of Mechanical Structures(Nanjing University of Aeronautics and Astronautics)(No.MCMS-0114G02)
文摘A parametric variational principle and the corresponding numerical algo- rithm are proposed to solve a linear-quadratic (LQ) optimal control problem with control inequality constraints. Based on the parametric variational principle, this control prob- lem is transformed into a set of Hamiltonian canonical equations coupled with the linear complementarity equations, which are solved by a linear complementarity solver in the discrete-time domain. The costate variable information is also evaluated by the proposed method. The parametric variational algorithm proposed in this paper is suitable for both time-invariant and time-varying systems. Two numerical examples are used to test the validity of the proposed method. The proposed algorithm is used to astrodynamics to solve a practical optimal control problem for rendezvousing spacecrafts with a finite low thrust. The numerical simulations show that the parametric variational algorithm is ef- fective for LQ optimal control problems with control inequality constraints.
文摘In this paper, an efficient computational approach is proposed to solve the discrete time nonlinear stochastic optimal control problem. For this purpose, a linear quadratic regulator model, which is a linear dynamical system with the quadratic criterion cost function, is employed. In our approach, the model-based optimal control problem is reformulated into the input-output equations. In this way, the Hankel matrix and the observability matrix are constructed. Further, the sum squares of output error is defined. In these point of views, the least squares optimization problem is introduced, so as the differences between the real output and the model output could be calculated. Applying the first-order derivative to the sum squares of output error, the necessary condition is then derived. After some algebraic manipulations, the optimal control law is produced. By substituting this control policy into the input-output equations, the model output is updated iteratively. For illustration, an example of the direct current and alternating current converter problem is studied. As a result, the model output trajectory of the least squares solution is close to the real output with the smallest sum squares of output error. In conclusion, the efficiency and the accuracy of the approach proposed are highly presented.
基金supported by the National Natural Science Foundation of China(No.12031009)。
文摘The authors give a stochastic maximum principle for square-integrable optimal control of linear stochastic systems.The control domain is not necessarily convex and the cost functional can have a quadratic growth.In particular,they give a stochastic maximum principle for the linear quadratic optimal control problem.
基金This work was supported by the National Science Foundation of China(No.60274036).
文摘For a SlSO linear discrete-time system with a specified input signal, a novel method to realize optimal l1 regulation control is presented. Utilizing the technique of converting a polynomial equation to its corresponding matrix equation, a linear programming problem to get an optimal l1 norm of the system output error map is developed which includes the first term and the last term of the map sequence in the objective function and the right vector of its constraint matrix equation, respectively. The adjustability for the width of the constraint matrix makes the trade-off between the order of the optimal regulator and the value of the minimum objective norm become possible, especially for achieving the optimal regulator with minimum order. By norm scaling rules for the constraint matrix equation, the optimal solution can be scaled directly or be obtained by solving a linear programming problem with l1 norm objective.
文摘The suppression of linear transient growth in turbulent channel flows via linear optimal controls is investigated. The control algorithms are the LQR control based on full information of flow fields and the LQG control based on the information measured at walls. The influence of these controls on the development of small-scale and large-scale perturbations are considered respectively. It is found that the energy amplification of large-scale perturbations is suppressed significantly by both LQR and LQG control, while small-scale perturbations can be only affect by LQR control. Effects of the weighting parameters and control price on the control performance of both controls are analysed. It turns out that the different weighting parameters in cost function do not qualitatively change the evalution of control performance. As control price raises, the effectiveness of both controls decreases distinctly. For small-scale perturbations, the upper limit of the effective range of control price is lower than that for large-scale perturbations. As Reynolds number increases, it indicates that both LQR and LQG control get more effective on suppressing the energy amplification of large-scale perturbations.
文摘In this paper, a new approach using linear combination property of intervals and discretization is proposed to solve a class of nonlinear optimal control problems, containing a nonlinear system and linear functional, in three phases. In the first phase, using linear combination property of intervals, changes nonlinear system to an equivalent linear system, in the second phase, using discretization method, the attained problem is converted to a linear programming problem, and in the third phase, the latter problem will be solved by linear programming methods. In addition, efficiency of our approach is confirmed by some numerical examples.
文摘We consider optimal control problems for the flow of gas in a pipe network. The equations of motions are taken to be represented by a semi-linear model derived from the fully nonlinear isothermal Euler gas equations. We formulate an optimal control problem on a given network and introduce a time discretization thereof. We then study the well-posedness of the corresponding time-discrete optimal control problem. In order to further reduce the complexity, we consider an instantaneous control strategy. The main part of the paper is concerned with a non-overlapping domain decomposition of the semi-linear elliptic optimal control problem on the graph into local problems on a small part of the network, ultimately on a single edge.
基金supported by the National Natural Science Foundation of China under Grant No.61673284the Science Development Project of Sichuan University under Grant No.2020SCUNL201。
文摘The optimal control problem with a long run average cost is investigated for unknown linear discrete-time systems with additive noise.The authors propose a value iteration-based stochastic adaptive dynamic programming(VI-based SADP)algorithm,based on which the optimal controller is obtained.Different from the existing relevant work,the algorithm does not need to estimate the expectation(conditional expectation)and variance(conditional variance)of states or other relevant variables,and the convergence of the algorithm can be proved rigorously.A simulation example is given to verify the effectiveness of the proposed approach.
文摘Anthrax is an infection caused by bacteria and it affects both human and animal populations. The disease can be categorized under zoonotic diseases and humans can contract infections through contact with infected animals, ingest contaminated dairy and animal products. In this paper, we developed a mathematical model for anthrax transmission dynamics in both human and animal populations with optimal control. The qualitative solution of the model behaviour was analyzed by determining Rhv, equilibrium points and sensitivity analysis. A vaccination class was incorporated into the model with waning immunity. Local and global stability of the model’s equilibria was found to be locally asymptotically stable whenever Rhv Rhv. It was revealed that reducing animal and human interaction rate, would decrease Rhv. We extended the model to optimal control in order to find the best control strategy in reducing anthrax infections. It showed that the effective strategy in combating the anthrax epidemics is vaccination of animals and prevention of humans.