This paper proposes a two-parameter block triangular splitting(TPTS)preconditioner for the general block two-by-two linear systems.The eigenvalues of the corresponding preconditioned matrix are proved to cluster aroun...This paper proposes a two-parameter block triangular splitting(TPTS)preconditioner for the general block two-by-two linear systems.The eigenvalues of the corresponding preconditioned matrix are proved to cluster around 0 or 1 under mild conditions.The limited numerical results show that the TPTS preconditioner is more efficient than the classic block-diagonal and block-triangular preconditioners when applied to the flexible generalized minimal residual(FGMRES)method.展开更多
Safety critical control is often trained in a simulated environment to mitigate risk.Subsequent migration of the biased controller requires further adjustments.In this paper,an experience inference human-behavior lear...Safety critical control is often trained in a simulated environment to mitigate risk.Subsequent migration of the biased controller requires further adjustments.In this paper,an experience inference human-behavior learning is proposed to solve the migration problem of optimal controllers applied to real-world nonlinear systems.The approach is inspired in the complementary properties that exhibits the hippocampus,the neocortex,and the striatum learning systems located in the brain.The hippocampus defines a physics informed reference model of the realworld nonlinear system for experience inference and the neocortex is the adaptive dynamic programming(ADP)or reinforcement learning(RL)algorithm that ensures optimal performance of the reference model.This optimal performance is inferred to the real-world nonlinear system by means of an adaptive neocortex/striatum control policy that forces the nonlinear system to behave as the reference model.Stability and convergence of the proposed approach is analyzed using Lyapunov stability theory.Simulation studies are carried out to verify the approach.展开更多
This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of...This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of a static output feedback H ∞ controller are given in terms of LMIs. Furthermore, the design method of H ∞ controllers is provided using the solutions to the LMIs.展开更多
In this paper,a new parallel controller is developed for continuous-time linear systems.The main contribution of the method is to establish a new parallel control law,where both state and control are considered as the...In this paper,a new parallel controller is developed for continuous-time linear systems.The main contribution of the method is to establish a new parallel control law,where both state and control are considered as the input.The structure of the parallel control is provided,and the relationship between the parallel control and traditional feedback controls is presented.Considering the situations that the systems are controllable and incompletely controllable,the properties of the parallel control law are analyzed.The parallel controller design algorithms are given under the conditions that the systems are controllable and incompletely controllable.Finally,numerical simulations are carried out to demonstrate the effectiveness and applicability of the present method.Index Terms-Continuous-time linear systems,digital twin,parallel controller,parallel intelligence,parallel systems.展开更多
In this paper eigenstructure assignment via proportional-plus-derivative feedback is investigated for a class of second-order descriptor linear systems. Under certain conditions, simple, general and complete parametri...In this paper eigenstructure assignment via proportional-plus-derivative feedback is investigated for a class of second-order descriptor linear systems. Under certain conditions, simple, general and complete parametric solutions of both finite closed-loop eigenvector matrices and feedback gain matrices are derived. The parametric approach utilizes directly original system data, involves manipulations only on n-dimensional matrices, and reveals all the design degrees of freedom which can be further utilized to achieve certain additional system specifications. A numerical example shows the effect of the proposed approach.展开更多
This paper considers eigenstructure assignment in second-order linear systems via proportional plus derivative feedback. It is shown that the problem is closely related to a type of so-called second-order Sylvester ma...This paper considers eigenstructure assignment in second-order linear systems via proportional plus derivative feedback. It is shown that the problem is closely related to a type of so-called second-order Sylvester matrix equations. Through establishing two general parametric solutions to this type of matrix equations, two complete parametric methods for the proposed eigenstructure assignment problem are presented. Both methods give simple complete parametric expressions for the feedback gains and the closed-loop eigenvector matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the right factorization of the system, and allows the closed-loop eigenvalues to be set undetermined and sought via certain optimization procedures. An example shows the effectiveness of the proposed approaches. Keywords Second-order linear systems - Eigenstructure assignment - Proportional plus derivative feedback - Parametric solution - Singular value decompoition - Right factorization This work was supported in part by the Chinese Outstanding Youth Foundation (No.69504002).展开更多
In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-m...In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-matrix by which nor only the requirements of [3] on coefficient matrix are lowered, but also a larger region of convergence than that in [3] is obtained.展开更多
In this paper, we consider the relation between the switching dwell time and the stabilization of switched linear control systems. First of all, a concept of critical dwell time is given for switched linear systems wi...In this paper, we consider the relation between the switching dwell time and the stabilization of switched linear control systems. First of all, a concept of critical dwell time is given for switched linear systems without control inputs, and the critical dwell time is taken as an arbitrary given positive constant for a switched linear control systems with controllable switching models. Secondly, when a switched linear system has many stabilizable switching models, the problem of stabilization of the overall system is considered. An on-line feedback control is designed such that the overall system is asymptotically stabilizable under switching laws which depend only on those of uncontrollable subsystems of the switching models. Finally, when a switched system is partially controllable (While some switching models are probably unstabilizable), an on-line feedback control and a cyclic switching strategy are designed such that the overall system is asymptotically stabilizable if all switching models of this uncontrollable subsystems are asymptotically stable. In addition, algorithms for designing switching laws and controls are presented.展开更多
In this paper, the normal Luenberger function observer design for second-order descriptor linear systems is considered. It is shown that the main procedure of the design is to solve a so-called second-order generalize...In this paper, the normal Luenberger function observer design for second-order descriptor linear systems is considered. It is shown that the main procedure of the design is to solve a so-called second-order generalized Sylvester-observer matrix equation. Based on an explicit parametric solution to this equation, a parametric solution to the normal Luenberger function observer design problem is given. The design degrees of freedom presented by explicit parameters can be further utilized to achieve some additional design requirements.展开更多
This paper studies the problem of designing adaptive fault-tolerant H-infinity controllers for linear timeinvariant systems with actuator saturation. The disturbance tolerance ability of the closed-loop system is meas...This paper studies the problem of designing adaptive fault-tolerant H-infinity controllers for linear timeinvariant systems with actuator saturation. The disturbance tolerance ability of the closed-loop system is measured by an optimal index. The notion of an adaptive H-infinity performance index is proposed to describe the disturbance attenuation performances of closed-loop systems. New methods for designing indirect adaptive fault-tolerant controllers via state feedback are presented for actuator fault compensations. Based on the on-line estimation of eventual faults, the adaptive fault-tolerant controller parameters are updated automatically to compensate for the fault effects on systems. The designs are developed in the framework of the linear matrix inequality (LMI) approach, which can guarantee the disturbance tolerance ability and adaptive H-infinity performances of closed-loop systems in the cases of actuator saturation and actuator failures. An example is given to illustrate the efficiency of the design method.展开更多
Robust model-reference control for descriptor linear systems with structural parameter uncertainties is investigated. A sufficient condition for existing a model-reference zero-error asymptotic tracking controller is ...Robust model-reference control for descriptor linear systems with structural parameter uncertainties is investigated. A sufficient condition for existing a model-reference zero-error asymptotic tracking controller is given. It is shown that the robust model reference control problem can be decomposed into two subproblems: a robust state feedback stabilization problem for descriptor systems subject to parameter uncertainties and a robust compensation problem. The latter aims to find three coefficient matrices which satisfy four matrix equations and simultaneously minimize the effect of the uncertainties to the tracking error. Based on a complete parametric solution to a class of generalized Sylvester matrix equations, the robust compensation problem is converted into a minimization problem with quadratic cost and linear constraints. A numerical example shows the effect of the proposed approach.展开更多
This paper presents an H∞ controller design method for piecewise discrete time linear systems based on a piecewise quadratic Lyapunov function. It is shown that the resulting closed loop system is globally stable wit...This paper presents an H∞ controller design method for piecewise discrete time linear systems based on a piecewise quadratic Lyapunov function. It is shown that the resulting closed loop system is globally stable with guaranteed H∞ performance and the controller can be obtained by solving a set of bilinear matrix inequalities. It has been shown that piecewise quadratic Lyapunov functions are less conservative than the global quadratic Lyapunov functions. A simulation example is also given to illustrate the advantage of the proposed approach.展开更多
A simple method for disturbance decoupling for matrix second-order linear systems is proposed directly in matrix second-order framework via Luenberger function observers based on complete parametric eigenstructure ass...A simple method for disturbance decoupling for matrix second-order linear systems is proposed directly in matrix second-order framework via Luenberger function observers based on complete parametric eigenstructure assignment. By introducing the H2 norm of the transfer function from disturbance to estimation error, sufficient and necessary conditions for disturbance decoupling in matrix second-order linear systems are established and are arranged into constraints on the design parameters via Luenberger function observers in terms of the closed-loop eigenvalues and the group of design parameters provided by the eigenstructure assignment approach. Therefore, the disturbance decoupling problem is converted into an eigenstructure assignment problem with extra parameter constraints. A simple example is investigated to show the effect and simplicity of the approach.展开更多
A novel method based on ant colony optimization (ACO), algorithm for solving the ill-conditioned linear systems of equations is proposed. ACO is a parallelized bionic optimization algorithm which is inspired from th...A novel method based on ant colony optimization (ACO), algorithm for solving the ill-conditioned linear systems of equations is proposed. ACO is a parallelized bionic optimization algorithm which is inspired from the behavior of real ants. ACO algorithm is first introduced, a kind of positive feedback mechanism is adopted in ACO. Then, the solu- tion problem of linear systems of equations was reformulated as an unconstrained optimization problem for solution by an ACID algorithm. Finally, the ACID with other traditional methods is applied to solve a kind of multi-dimensional Hilbert ill-conditioned linear equations. The numerical results demonstrate that ACO is effective, robust and recommendable in solving ill-conditioned linear systems of equations.展开更多
In this note, the state and mode feedback control problems for a class of discrete-time Markovian jump linear systems(MJLSs) with controllable mode transition probability matrix(MTPM) are investigated. In most achieve...In this note, the state and mode feedback control problems for a class of discrete-time Markovian jump linear systems(MJLSs) with controllable mode transition probability matrix(MTPM) are investigated. In most achievements, controller design of MJLSs pays more attention to state/output feedback control for stability, while the system cost in practice is out of consideration. In this paper, we propose a control mechanism consisting of two parts: finite-path-dependent state feedback controller design with which uniform stability of MJLSs can be ensured, and mode feedback control which aims to decrease system cost. Differing from the traditional state/output feedback controller design, the main novelty is that the proposed control mechanism not only guarantees system stability, but also decreases system cost effectively by adjusting the occurrence probability of system modes. The effectiveness of the proposed mechanism is illustrated via numerical examples.展开更多
This paper proposes a tube-based method for the asynchronous observation problem of discrete-time switched linear systems in the presence of amplitude-bounded disturbances.Sufficient stability conditions of the nomina...This paper proposes a tube-based method for the asynchronous observation problem of discrete-time switched linear systems in the presence of amplitude-bounded disturbances.Sufficient stability conditions of the nominal observer error system under mode-dependent persistent dwell-time(MPDT)switching are first established. Taking the disturbances into account, a novel asynchronous MPDT robust positive invariant(RPI) set and an asynchronous MPDT generalized RPI(GRPI)set are determined for the difference system between the nominal and disturbed observer error systems. Further, the global uniform asymptotical stability of the observer error system is established in the sense of converging to the asynchronous MPDT GRPI set, i.e., the cross section of the tube of the observer error system. Finally, the proposed results are validated on a space robot manipulator example.展开更多
Some preliminary results on strict bounded real lemma for time-varying continuous linear systems are proposed, where uncertainty in initial conditions, terminal cost and extreme of the cost function are dealt with exp...Some preliminary results on strict bounded real lemma for time-varying continuous linear systems are proposed, where uncertainty in initial conditions, terminal cost and extreme of the cost function are dealt with explicitly. Based on these results, a new recursive approach is proposed in the necessity proof of strict bounded real lemma for generalized linear system with finite discrete jumps.展开更多
The seed method is used for solving multiple linear systems A (i)x (i) =b (i) for 1≤i≤s, where the coefficient matrix A (i) and the right-hand side b (i) are different in general. It is known that the CG meth...The seed method is used for solving multiple linear systems A (i)x (i) =b (i) for 1≤i≤s, where the coefficient matrix A (i) and the right-hand side b (i) are different in general. It is known that the CG method is an effective method for symmetric coefficient matrices A (i). In this paper, the FOM method is employed to solve multiple linear sy stems when coefficient matrices are non-symmetric matrices. One of the systems is selected as the seed system which generates a Krylov subspace, then the resi duals of other systems are projected onto the generated Krylov subspace to get t he approximate solutions for the unsolved ones. The whole process is repeated u ntil all the systems are solved.展开更多
A simple parametric approach to design a full-order observer for matrix second-order linear systems with uncertain disturbance input in the matrixsecond-order framework is proposed. The basic idea is to minimize the H...A simple parametric approach to design a full-order observer for matrix second-order linear systems with uncertain disturbance input in the matrixsecond-order framework is proposed. The basic idea is to minimize the H2 norm of the transfer function from disturbance to estimation error using the design degrees of freedom provided by a parametric approach in the observer design. Besides the design parameters, the eigenvalues of the closed-loop system are also optimized within desired regions on the left-half of the complex plane. Using the proposed approach, additional specifications can be easily achieved. A spring-mass system is using to show the effect of the proposed approaches.展开更多
基金the National Natural Science Foundation of China under Grant Nos.61273311 and 61803247.
文摘This paper proposes a two-parameter block triangular splitting(TPTS)preconditioner for the general block two-by-two linear systems.The eigenvalues of the corresponding preconditioned matrix are proved to cluster around 0 or 1 under mild conditions.The limited numerical results show that the TPTS preconditioner is more efficient than the classic block-diagonal and block-triangular preconditioners when applied to the flexible generalized minimal residual(FGMRES)method.
基金supported by the Royal Academy of Engineering and the Office of the Chie Science Adviser for National Security under the UK Intelligence Community Postdoctoral Research Fellowship programme。
文摘Safety critical control is often trained in a simulated environment to mitigate risk.Subsequent migration of the biased controller requires further adjustments.In this paper,an experience inference human-behavior learning is proposed to solve the migration problem of optimal controllers applied to real-world nonlinear systems.The approach is inspired in the complementary properties that exhibits the hippocampus,the neocortex,and the striatum learning systems located in the brain.The hippocampus defines a physics informed reference model of the realworld nonlinear system for experience inference and the neocortex is the adaptive dynamic programming(ADP)or reinforcement learning(RL)algorithm that ensures optimal performance of the reference model.This optimal performance is inferred to the real-world nonlinear system by means of an adaptive neocortex/striatum control policy that forces the nonlinear system to behave as the reference model.Stability and convergence of the proposed approach is analyzed using Lyapunov stability theory.Simulation studies are carried out to verify the approach.
文摘This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of a static output feedback H ∞ controller are given in terms of LMIs. Furthermore, the design method of H ∞ controllers is provided using the solutions to the LMIs.
基金supported in part by the National Key Research and Development Program of China(2018AAA0101502,2018YFB1702300)the National Natural Science Foundation of China(61722312,61533019,U1811463,61533017)。
文摘In this paper,a new parallel controller is developed for continuous-time linear systems.The main contribution of the method is to establish a new parallel control law,where both state and control are considered as the input.The structure of the parallel control is provided,and the relationship between the parallel control and traditional feedback controls is presented.Considering the situations that the systems are controllable and incompletely controllable,the properties of the parallel control law are analyzed.The parallel controller design algorithms are given under the conditions that the systems are controllable and incompletely controllable.Finally,numerical simulations are carried out to demonstrate the effectiveness and applicability of the present method.Index Terms-Continuous-time linear systems,digital twin,parallel controller,parallel intelligence,parallel systems.
基金Supported by the State Key Program of National Natural Science of China (60534010), National Basic Research Program of China (973 Program)(2009CB320604), National Natural Science Foundation of China (60674021), the Funds for Creative Research Groups of China (60521003), the 111 Project(B08015), and the Funds of Ph.D. Program of Ministry of Eduction, China (20060145019).
文摘In this paper eigenstructure assignment via proportional-plus-derivative feedback is investigated for a class of second-order descriptor linear systems. Under certain conditions, simple, general and complete parametric solutions of both finite closed-loop eigenvector matrices and feedback gain matrices are derived. The parametric approach utilizes directly original system data, involves manipulations only on n-dimensional matrices, and reveals all the design degrees of freedom which can be further utilized to achieve certain additional system specifications. A numerical example shows the effect of the proposed approach.
文摘This paper considers eigenstructure assignment in second-order linear systems via proportional plus derivative feedback. It is shown that the problem is closely related to a type of so-called second-order Sylvester matrix equations. Through establishing two general parametric solutions to this type of matrix equations, two complete parametric methods for the proposed eigenstructure assignment problem are presented. Both methods give simple complete parametric expressions for the feedback gains and the closed-loop eigenvector matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the right factorization of the system, and allows the closed-loop eigenvalues to be set undetermined and sought via certain optimization procedures. An example shows the effectiveness of the proposed approaches. Keywords Second-order linear systems - Eigenstructure assignment - Proportional plus derivative feedback - Parametric solution - Singular value decompoition - Right factorization This work was supported in part by the Chinese Outstanding Youth Foundation (No.69504002).
文摘In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-matrix by which nor only the requirements of [3] on coefficient matrix are lowered, but also a larger region of convergence than that in [3] is obtained.
基金This work was supported by the National Natural Science Foundation of China(No.60343001, 60221301) and the Foundation of Harbin EngineeringUniversity.
文摘In this paper, we consider the relation between the switching dwell time and the stabilization of switched linear control systems. First of all, a concept of critical dwell time is given for switched linear systems without control inputs, and the critical dwell time is taken as an arbitrary given positive constant for a switched linear control systems with controllable switching models. Secondly, when a switched linear system has many stabilizable switching models, the problem of stabilization of the overall system is considered. An on-line feedback control is designed such that the overall system is asymptotically stabilizable under switching laws which depend only on those of uncontrollable subsystems of the switching models. Finally, when a switched system is partially controllable (While some switching models are probably unstabilizable), an on-line feedback control and a cyclic switching strategy are designed such that the overall system is asymptotically stabilizable if all switching models of this uncontrollable subsystems are asymptotically stable. In addition, algorithms for designing switching laws and controls are presented.
基金This work was supported by National Natural Science Foundation of China(No.60710002)Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT).
文摘In this paper, the normal Luenberger function observer design for second-order descriptor linear systems is considered. It is shown that the main procedure of the design is to solve a so-called second-order generalized Sylvester-observer matrix equation. Based on an explicit parametric solution to this equation, a parametric solution to the normal Luenberger function observer design problem is given. The design degrees of freedom presented by explicit parameters can be further utilized to achieve some additional design requirements.
基金partly supported by Program for New Century Excellent Talents in University (No.NCET-04-0283)the Funds for Creative Research Groups of China (No.60521003)+4 种基金Program for Changjiang Scholars and Innovative Research Team in University (No.IRT0421)the State Key Program of National Natural Science of China (No.60534010)the Funds of National Science of China (No.60674021)the Funds of PhD program of MOE,China (No.20060145019)the 111 Project (No.B08015)
文摘This paper studies the problem of designing adaptive fault-tolerant H-infinity controllers for linear timeinvariant systems with actuator saturation. The disturbance tolerance ability of the closed-loop system is measured by an optimal index. The notion of an adaptive H-infinity performance index is proposed to describe the disturbance attenuation performances of closed-loop systems. New methods for designing indirect adaptive fault-tolerant controllers via state feedback are presented for actuator fault compensations. Based on the on-line estimation of eventual faults, the adaptive fault-tolerant controller parameters are updated automatically to compensate for the fault effects on systems. The designs are developed in the framework of the linear matrix inequality (LMI) approach, which can guarantee the disturbance tolerance ability and adaptive H-infinity performances of closed-loop systems in the cases of actuator saturation and actuator failures. An example is given to illustrate the efficiency of the design method.
基金This work was supported in part by the Chinese Outstanding Youth Science Foundation (No. 69925308)supported by Program for ChangjiangScholars and Innovative Research Team in University
文摘Robust model-reference control for descriptor linear systems with structural parameter uncertainties is investigated. A sufficient condition for existing a model-reference zero-error asymptotic tracking controller is given. It is shown that the robust model reference control problem can be decomposed into two subproblems: a robust state feedback stabilization problem for descriptor systems subject to parameter uncertainties and a robust compensation problem. The latter aims to find three coefficient matrices which satisfy four matrix equations and simultaneously minimize the effect of the uncertainties to the tracking error. Based on a complete parametric solution to a class of generalized Sylvester matrix equations, the robust compensation problem is converted into a minimization problem with quadratic cost and linear constraints. A numerical example shows the effect of the proposed approach.
文摘This paper presents an H∞ controller design method for piecewise discrete time linear systems based on a piecewise quadratic Lyapunov function. It is shown that the resulting closed loop system is globally stable with guaranteed H∞ performance and the controller can be obtained by solving a set of bilinear matrix inequalities. It has been shown that piecewise quadratic Lyapunov functions are less conservative than the global quadratic Lyapunov functions. A simulation example is also given to illustrate the advantage of the proposed approach.
文摘A simple method for disturbance decoupling for matrix second-order linear systems is proposed directly in matrix second-order framework via Luenberger function observers based on complete parametric eigenstructure assignment. By introducing the H2 norm of the transfer function from disturbance to estimation error, sufficient and necessary conditions for disturbance decoupling in matrix second-order linear systems are established and are arranged into constraints on the design parameters via Luenberger function observers in terms of the closed-loop eigenvalues and the group of design parameters provided by the eigenstructure assignment approach. Therefore, the disturbance decoupling problem is converted into an eigenstructure assignment problem with extra parameter constraints. A simple example is investigated to show the effect and simplicity of the approach.
文摘A novel method based on ant colony optimization (ACO), algorithm for solving the ill-conditioned linear systems of equations is proposed. ACO is a parallelized bionic optimization algorithm which is inspired from the behavior of real ants. ACO algorithm is first introduced, a kind of positive feedback mechanism is adopted in ACO. Then, the solu- tion problem of linear systems of equations was reformulated as an unconstrained optimization problem for solution by an ACID algorithm. Finally, the ACID with other traditional methods is applied to solve a kind of multi-dimensional Hilbert ill-conditioned linear equations. The numerical results demonstrate that ACO is effective, robust and recommendable in solving ill-conditioned linear systems of equations.
基金supported by the National Natural Science Foundation of China(61374073,61503356)Anhui Provincial Natural Science Foundation(1608085QF153)
文摘In this note, the state and mode feedback control problems for a class of discrete-time Markovian jump linear systems(MJLSs) with controllable mode transition probability matrix(MTPM) are investigated. In most achievements, controller design of MJLSs pays more attention to state/output feedback control for stability, while the system cost in practice is out of consideration. In this paper, we propose a control mechanism consisting of two parts: finite-path-dependent state feedback controller design with which uniform stability of MJLSs can be ensured, and mode feedback control which aims to decrease system cost. Differing from the traditional state/output feedback controller design, the main novelty is that the proposed control mechanism not only guarantees system stability, but also decreases system cost effectively by adjusting the occurrence probability of system modes. The effectiveness of the proposed mechanism is illustrated via numerical examples.
基金supported in part by the National Defense Basic Scientific Research Program of China(JCKY2018603C015)Cultivation Plan of Major Research Program of Harbin Institute of Technology(ZDXMPY20180101)
文摘This paper proposes a tube-based method for the asynchronous observation problem of discrete-time switched linear systems in the presence of amplitude-bounded disturbances.Sufficient stability conditions of the nominal observer error system under mode-dependent persistent dwell-time(MPDT)switching are first established. Taking the disturbances into account, a novel asynchronous MPDT robust positive invariant(RPI) set and an asynchronous MPDT generalized RPI(GRPI)set are determined for the difference system between the nominal and disturbed observer error systems. Further, the global uniform asymptotical stability of the observer error system is established in the sense of converging to the asynchronous MPDT GRPI set, i.e., the cross section of the tube of the observer error system. Finally, the proposed results are validated on a space robot manipulator example.
基金This work was supported by the National Natural Science Foundation of China (No. 60274058).
文摘Some preliminary results on strict bounded real lemma for time-varying continuous linear systems are proposed, where uncertainty in initial conditions, terminal cost and extreme of the cost function are dealt with explicitly. Based on these results, a new recursive approach is proposed in the necessity proof of strict bounded real lemma for generalized linear system with finite discrete jumps.
基金Project supported by the National Natural Science Foundation of China (Grant No.10271075)
文摘The seed method is used for solving multiple linear systems A (i)x (i) =b (i) for 1≤i≤s, where the coefficient matrix A (i) and the right-hand side b (i) are different in general. It is known that the CG method is an effective method for symmetric coefficient matrices A (i). In this paper, the FOM method is employed to solve multiple linear sy stems when coefficient matrices are non-symmetric matrices. One of the systems is selected as the seed system which generates a Krylov subspace, then the resi duals of other systems are projected onto the generated Krylov subspace to get t he approximate solutions for the unsolved ones. The whole process is repeated u ntil all the systems are solved.
基金This project was supported by the Chinese National Natural Science Foundation under Grant (10372015).
文摘A simple parametric approach to design a full-order observer for matrix second-order linear systems with uncertain disturbance input in the matrixsecond-order framework is proposed. The basic idea is to minimize the H2 norm of the transfer function from disturbance to estimation error using the design degrees of freedom provided by a parametric approach in the observer design. Besides the design parameters, the eigenvalues of the closed-loop system are also optimized within desired regions on the left-half of the complex plane. Using the proposed approach, additional specifications can be easily achieved. A spring-mass system is using to show the effect of the proposed approaches.