期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Diffraction of Oblique Water Waves by Small Uneven Channel-bed in a Two-layer Fluid
1
作者 Smrutiranjan Mohapatra 《Journal of Marine Science and Application》 2014年第3期255-264,共10页
Obliquely incident water wave scattering by an uneven channel-bed in the form of a small bottom undulation in a two-layer fluid is investigated within the frame work of three-dimensional linear water wave theory. The ... Obliquely incident water wave scattering by an uneven channel-bed in the form of a small bottom undulation in a two-layer fluid is investigated within the frame work of three-dimensional linear water wave theory. The upper fluid is assumed to be bounded above by a rigid lid, while the lower one is bounded below by a bottom surface having a small deformation and the channel is unbounded in the horizontal directions. Assuming irrotational motion, perturbation technique is employed to calculate the first-order corrections to the velocity potentials in the two fluids by using Fourier transform approximately, and also to calculate the reflection and transmission coefficients in terms of integrals involving the shape function representing the bottom deformation. Consideration of a patch of sinusoidal ripples shows that the reflection coefficient is an oscillatory function of the ratio of twice the component of the wave number along x-axis and the ripple wave number. When this ratio approaches one, the theory predicts a resonant interaction between the bed and interface, and the reflection coefficient becomes a multiple of the number of ripples. High reflection of incident wave energy occurs if this number is large. 展开更多
关键词 oblique waves two-layer fluid bottom undulation linear water wave theory reflection coefficient transmission coefficient perturbation technique Fourier transform
下载PDF
Oblique Water Wave Scattering by Bottom Undulation in a Two-layer Fluid Flowing Through a Channel 被引量:4
2
作者 Smrutiranjan Mohapatra Swaroop Nandan Bora 《Journal of Marine Science and Application》 2012年第3期276-285,共10页
The problem of oblique wave (internal wave) propagation over a small deformation in a channel flow consisting of two layers was considered. The upper fluid was assumed to be bounded above by a rigid lid, which is an... The problem of oblique wave (internal wave) propagation over a small deformation in a channel flow consisting of two layers was considered. The upper fluid was assumed to be bounded above by a rigid lid, which is an approximation for the free surface, and the lower one was bounded below by an impermeable bottom surface having a small deformation; the channel was unbounded in the horizontal directions. Assuming irrotational motion, the perturbation technique was employed to calculate the first-order corrections of the velocity potential in the two fluids by using Green's integral theorem suitably with the introduction of appropriate Green's functions. Those functions help in calculating the reflection and transmission coefficients in terms of integrals involving the shape ftmction c(x) representing the bottom deformation. Three-dimensional linear water wave theory was utilized for formulating the relevant boundary value problem. Two special examples of bottom deformation were considered to validate the results. Consideration of a patch of sinusoidal ripples (having the same wave number) shows that the reflection coefficient is an oscillatory function of the ratio of twice the x-component of the wave number to the ripple wave number. When this ratio approaches one, the theory predicts a resonant interaction between the bed and the interface, and the reflection coefficient becomes a multiple of the number of ripples. High reflection of incident wave energy occurs if this number is large. Similar results were observed for a patch of sinusoidal ripples having different wave numbers. It was also observed that for small angles of incidence, the reflected energy is greater compared to other angles of incidence up to π/ 4. These theoretical observations are supported by graphical results. 展开更多
关键词 two-layer fluid oblique waves wave scattering reflection coefficient transmission coefficient linear water wave theory perturbation technique Bottom Undulation
下载PDF
Comparison of Linear Level I Green-Naghdi Theory with Linear Wave Theory for Prediction of Hydroelastic Responses of VLFS 被引量:5
3
作者 宋皓 崔维成 刘应中 《China Ocean Engineering》 SCIE EI 2002年第3期283-300,共18页
Very Large Floating Structures (VLFS) have drawn considerable attention recently due to their potential significance in the exploitation of ocean resources and in the utilization of ocean space. Efficient and accurate... Very Large Floating Structures (VLFS) have drawn considerable attention recently due to their potential significance in the exploitation of ocean resources and in the utilization of ocean space. Efficient and accurate estimation of their hydroelastic responses to waves is very important for the design. Recently, an efficient numerical algorithm was developed by Ertekin and Kim (1999). However, in their analysis, the linear Level I Green-Naghdi (GN) theory is employed to describe fluid dynamics instead of the conventional linear wave (LW) theory of finite water depth. They claimed that this linear level I GN theory provided better predictions of the hydroelastic responses of VLFS than the linear wave theory. In this paper, a detailed derivation is given in the conventional linear wave theory framework with the same quantity as used in the linear level I GN theory framework. This allows a critical comparison between the linear wave theory and the linear level I GN theory. It is found that the linear level I GN theory can be regarded as an approximation to the linear wave theory of finite water depth. The consequences of the differences between these two theories in the predicted hydroelastic responses are studied quantitatively. And it is found that the linear level I GN theory is not superior to the linear wave theory. Finally, various factors affecting the hydroelastic response of VLFS are studied with the implemented algorithm. 展开更多
关键词 hydroelastic responses very large floating structures linear wave theory of finite water depth linear level I Green-Naghdi theory thin plate theory
下载PDF
Large-scale edge waves generated by a moving atmospheric pressure 被引量:1
4
作者 Chao An Philip L-F. Liu Seung Nam Seo 《Theoretical & Applied Mechanics Letters》 CAS 2012年第4期13-16,共4页
Long waves generated by a moving atmospheric pressure distribution, associated with a storm, in coastal region are investigated numerically. For simplicity the moving atmospheric pressure is assumed to be moving only ... Long waves generated by a moving atmospheric pressure distribution, associated with a storm, in coastal region are investigated numerically. For simplicity the moving atmospheric pressure is assumed to be moving only in the alongshore direction and the beach slope is assumed to be a constant in the on-offshore direction. By solving the linear shallow water equations we obtain numerical solutions for a wide range of physical parameters, including storm size (2a), storm speed (U), and beach slope (a). Based on the numerical results, it is determined that edge wave packets are generated if the storm speed is equal to or greater than the critical velocity, Ucr, which is defined as the phase speed of the fundamental edge wave mode whose wavelength is scaled by the width of the storm size. The length and the location of the positively moving edge wave packet is roughly Ut/2 〈 y 〈 Ut, where y is in the alongshore direction and t is the time. Once the edge wave packet is generated, the wavelength is the same as that of the fundamental edge wave mode corresponding to the storm speed and is independent of the storm size, which can, however, affect the wave amplitude. When the storm speed is less than the critical velocity, the primary surface signature is a depression directly correlated to the atmospheric pressure distribution. 展开更多
关键词 edge wave packet moving atmospheric pressure linear and nonlinear shallow water waves numerical solutions
下载PDF
PerfectlyMatched Layer withMixed Spectral Elements for the Propagation of LinearizedWaterWaves
5
作者 Gary Cohen Sebastien Imperiale 《Communications in Computational Physics》 SCIE 2012年第2期285-302,共18页
After setting a mixed formulation for the propagation of linearized water waves problem,we define its spectral element approximation.Then,in order to take into account unbounded domains,we construct absorbing perfectl... After setting a mixed formulation for the propagation of linearized water waves problem,we define its spectral element approximation.Then,in order to take into account unbounded domains,we construct absorbing perfectly matched layer for the problem.We approximate these perfectly matched layer by mixed spectral elements and show their stability using the“frozen coefficient”technique.Finally,numerical results will prove the efficiency of the perfectly matched layer compared to classical absorbing boundary conditions. 展开更多
关键词 linearized water waves perfectly matched layer mixed finite elements
原文传递
Wave Scattering by a Submerged Sphere in Three-Layer Fluid
6
作者 Minakshi Ghosh Manomita Sahu Dilip Das 《Journal of Marine Science and Application》 CSCD 2022年第1期37-50,共14页
Using linear water wave theory,three-dimensional problems concerning the interaction of waves with spherical structures in a fluid which contains a three-layer fluid consisting of a layer of finite depth bounded above... Using linear water wave theory,three-dimensional problems concerning the interaction of waves with spherical structures in a fluid which contains a three-layer fluid consisting of a layer of finite depth bounded above by freshwater of finite depth with free surface and below by an infinite layer of water of greater density are considered.In such a situation timeharmonic waves with a given frequency can propagate with three wavenumbers.The sphere is submerged in either of the three layers.Each problem is reduced to an infinite system of linear equations by employing the method of multipoles and the system of equations is solved numerically by standard technique.The hydrodynamic forces(vertical and horizontal forces)are obtained and depicted graphically against the wavenumber.When the density ratio of the upper and middle layer is made to approximately one,curves for vertical and horizontal forces almost coincide with the corresponding curves for the case of a two-layer fluid with a free surface.This means that in the limit,the density ratio of the upper and middle layer goes to approximately one,the solution agrees with the solution for the case of a two-layer fluid with a free surface. 展开更多
关键词 Three-layer fluid Wave scattering Submerged sphere Hydrodynamic forces Vertical and horizontal forces linear water wave theory Density-stratified three-layer fluid Submerged spherical structure Underwater sphere
下载PDF
OBLIQUE WATER WAVES IMPACTING ON A THIN POROUS WALL WITH A PARTIAL-SLIPPING BOUNDARY CONDITION
7
作者 HSU Hao-Jen HUANG Liang-Hsiung 《Journal of Hydrodynamics》 SCIE EI CSCD 2011年第3期361-371,共11页
When an incoming water wave is parallel to a porous breakwater, a paradoxical phenomenon exists in that by strictly following the potential flow boundary condition of normal flux continuity on the interfaces, the wate... When an incoming water wave is parallel to a porous breakwater, a paradoxical phenomenon exists in that by strictly following the potential flow boundary condition of normal flux continuity on the interfaces, the water wave permeates the wall completely, regardless of breakwater porosity. To account for this paradoxical phenomenon when solving the problem of water waves obliquely impacting on a thin porous wall, a new partial-slipping boundary condition on the thin porous wall for potential flow is proposed. Analytical results show that when the water wave is parallel to a thin porous wall (i.e., the incident angle equals to 90~), the transmitted wave side remains quiescent, i.e., the transmitted wave side does not capture any wave energy when no viscous effect exists. This reveals that the above-mentioned paradoxical investigated in this study, which provides proper boundary information. phenomenon disappears. The viscous boundary layer effect is also conditions on a thin porous wall for viscous flows and detailed flow 展开更多
关键词 oblique linear water wave thin porous wall partial-slipping boundary condition boundary layer
原文传递
L2 Decay Estimate of BCL Equation
8
作者 XU Hongmei YAN Luxiao 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2017年第4期283-288,共6页
This paper considers linearized BCL system with viscosity which is firstly derived by J. L. Bona, T. Colin and D. Lannes for the study of motion of water waves. Ldecay estimate is got by means of Fourier analysis and ... This paper considers linearized BCL system with viscosity which is firstly derived by J. L. Bona, T. Colin and D. Lannes for the study of motion of water waves. Ldecay estimate is got by means of Fourier analysis and frequency decomposition. This result plays key role in studying the global well-posedness of corresponding nonlinear system. 展开更多
关键词 L2 decay estimate linearized BCL system water wave
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部