We gave the localized solutions,the interaction solutions and the mixed solutions to a reduced(3+1)-dimensional nonlinear evolution equation.These solutions were characterized by superposition formulas of positive qua...We gave the localized solutions,the interaction solutions and the mixed solutions to a reduced(3+1)-dimensional nonlinear evolution equation.These solutions were characterized by superposition formulas of positive quadratic functions,the exponential and hyperbolic functions.According to the known lump solution in the outset,we obtained the superposition formulas of positive quadratic functions by plausible reasoning.Next,we constructed the interaction solutions between the localized solutions and the exponential function solutions with the similar theory.These two kinds of solutions contained superposition formulas of positive quadratic functions,which were turned into general ternary quadratic functions,the coefficients of which were all rational operation of vector inner product.Then we obtained linear superposition formulas of exponential and hyperbolic function solutions.Finally,for aforementioned various solutions,their dynamic properties were showed by choosing specific values for parameters.From concrete plots,we observed wave characteristics of three kinds of solutions.Especially,we could observe distinct generation and separation situations when the localized wave and the stripe wave interacted at different time points.展开更多
This paper is confined to analyzing and implementing new spectral solutions of the fractional Riccati differential equation based on the application of the spectral tau method.A new explicit formula for approximating ...This paper is confined to analyzing and implementing new spectral solutions of the fractional Riccati differential equation based on the application of the spectral tau method.A new explicit formula for approximating the fractional derivatives of shifted Chebyshev polynomials of the second kind in terms of their original polynomials is established.This formula is expressed in terms of a certain terminating hypergeometric function of the type_(4)F_(3)(1).This hypergeometric function is reduced in case of the integer case into a certain terminating hypergeometric function of the type 3 F 2(1)which can be summed with the aid of Watson’s identity.Six illustrative examples are presented to ensure the applicability and accuracy of the proposed algorithm.展开更多
An algorithm for calculating gravity effect of three-dimensional (3D) linear density distribution is presented in this paper. The linear continuous density distribution is represented with 3D grid model, which has a ...An algorithm for calculating gravity effect of three-dimensional (3D) linear density distribution is presented in this paper. The linear continuous density distribution is represented with 3D grid model, which has a resemblance to the velocity model used in some seismic tomography codes. The consensus in representation method of density model and velocity model facilitates the seismic-gravity-integrated interpretation or simultaneous inversion. The numerical test of synthetic data shows that although the analytical gravity formula for linear density distribution is more complex than that for piecewise constant density distribution, it takes less time to calculate the gravity effect with linear density model than that with piecewise constant density model. In addition, this method is used in the integrated interpretation of 3D seismological tomography and gravity data in Dabie Mountain area.展开更多
基金the National Natural Science Foundation of China(Grant No.12061054)Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region of China(Grant No.NJYT-20A06)。
文摘We gave the localized solutions,the interaction solutions and the mixed solutions to a reduced(3+1)-dimensional nonlinear evolution equation.These solutions were characterized by superposition formulas of positive quadratic functions,the exponential and hyperbolic functions.According to the known lump solution in the outset,we obtained the superposition formulas of positive quadratic functions by plausible reasoning.Next,we constructed the interaction solutions between the localized solutions and the exponential function solutions with the similar theory.These two kinds of solutions contained superposition formulas of positive quadratic functions,which were turned into general ternary quadratic functions,the coefficients of which were all rational operation of vector inner product.Then we obtained linear superposition formulas of exponential and hyperbolic function solutions.Finally,for aforementioned various solutions,their dynamic properties were showed by choosing specific values for parameters.From concrete plots,we observed wave characteristics of three kinds of solutions.Especially,we could observe distinct generation and separation situations when the localized wave and the stripe wave interacted at different time points.
文摘This paper is confined to analyzing and implementing new spectral solutions of the fractional Riccati differential equation based on the application of the spectral tau method.A new explicit formula for approximating the fractional derivatives of shifted Chebyshev polynomials of the second kind in terms of their original polynomials is established.This formula is expressed in terms of a certain terminating hypergeometric function of the type_(4)F_(3)(1).This hypergeometric function is reduced in case of the integer case into a certain terminating hypergeometric function of the type 3 F 2(1)which can be summed with the aid of Watson’s identity.Six illustrative examples are presented to ensure the applicability and accuracy of the proposed algorithm.
文摘An algorithm for calculating gravity effect of three-dimensional (3D) linear density distribution is presented in this paper. The linear continuous density distribution is represented with 3D grid model, which has a resemblance to the velocity model used in some seismic tomography codes. The consensus in representation method of density model and velocity model facilitates the seismic-gravity-integrated interpretation or simultaneous inversion. The numerical test of synthetic data shows that although the analytical gravity formula for linear density distribution is more complex than that for piecewise constant density distribution, it takes less time to calculate the gravity effect with linear density model than that with piecewise constant density model. In addition, this method is used in the integrated interpretation of 3D seismological tomography and gravity data in Dabie Mountain area.