Zero-field single-beam atomic magnetometers with transverse parametric modulation for ultra-weak magnetic field detection have attracted widespread attention recently.In this study,we present a comprehensive response ...Zero-field single-beam atomic magnetometers with transverse parametric modulation for ultra-weak magnetic field detection have attracted widespread attention recently.In this study,we present a comprehensive response model and propose a modification method of conventional first harmonic response by introducing the second harmonic correction.The proposed modification method gives improvement in dynamic range and reduction of linearity error.Additionally,our modification method shows suppression of response instability caused by optical intensity and frequency fluctuations.An atomic magnetometer with single-beam configuration is built to compare the performance between our proposed method and the conventional method.The results indicate that our method’s magnetic field response signal achieves a 5-fold expansion of dynamic range from 2 nT to 10 nT,with the linearity error decreased from 5%to 1%.Under the fluctuations of 5%for optical intensity and±15 GHz detuning of frequency,the proposed modification method maintains intensityrelated instability less than 1%and frequency-related instability less than 8%while the conventional method suffers 15%and 38%,respectively.Our method is promising for future high-sensitive and long-term stable optically pumped atomic sensors.展开更多
Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which ent...Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.展开更多
The turbo equalization approach is studied for Orthogonal Frequency Division Multiplexing (OFDM) system with combined error control coding and linear precoding. While previous literatures employed linear precodcr of...The turbo equalization approach is studied for Orthogonal Frequency Division Multiplexing (OFDM) system with combined error control coding and linear precoding. While previous literatures employed linear precodcr of small size for complexity reasons, this paper proposes to use a linear precoder of size larger than or equal to the maximum length of the equivalent discrete-time channel in order to achieve full frequency diversity and reduce complexities of the error control coder/decoder. Also a low complexity Linear Minimum Mean Square Error (LMMSE) turbo equalizer is derived for the receiver. Through simulation and performance analysis, it is shown that the performance of the proposed scheme over frequency selective fading channel reaches the matched filter bound; compared with the same coded OFDM without linear precoding, the proposed scheme shows an Signal-to-Noise Ratio (SNR) improvement of at least 6dB at a bit error rate of 10 6 over a multipath channel with exponential power delay profile. Convergence behavior of the proposed scheme with turbo equalization using various type of linear precoder/transformer, various interleaver size and error control coder of various constraint length is also investigated.展开更多
Statistical properties of stock market time series and the implication of their Hurst exponents are discussed. Hurst exponents of DJIA (Dow Jones Industrial Average) components are tested using re scaled range analy...Statistical properties of stock market time series and the implication of their Hurst exponents are discussed. Hurst exponents of DJIA (Dow Jones Industrial Average) components are tested using re scaled range analysis. In addition to the original stock return series, the linear prediction errors of the daily returns are also tested. Numerical results show that the Hurst exponent analysis can provide some information about the statistical properties of the financial time series.展开更多
Higher transmission rate is one of the technological features of promi-nently used wireless communication namely Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing(MIMO–OFDM).One among an effec...Higher transmission rate is one of the technological features of promi-nently used wireless communication namely Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing(MIMO–OFDM).One among an effective solution for channel estimation in wireless communication system,spe-cifically in different environments is Deep Learning(DL)method.This research greatly utilizes channel estimator on the basis of Convolutional Neural Network Auto Encoder(CNNAE)classifier for MIMO-OFDM systems.A CNNAE classi-fier is one among Deep Learning(DL)algorithm,in which video signal is fed as input by allotting significant learnable weights and biases in various aspects/objects for video signal and capable of differentiating from one another.Improved performances are achieved by using CNNAE based channel estimation,in which extension is done for channel selection as well as achieve enhanced performances numerically,when compared with conventional estimators in quite a lot of scenar-ios.Considering reduction in number of parameters involved and re-usability of weights,CNNAE based channel estimation is quite suitable and properlyfits to the video signal.CNNAE classifier weights updation are done with minimized Sig-nal to Noise Ratio(SNR),Bit Error Rate(BER)and Mean Square Error(MSE).展开更多
A new channel estimation and data detection joint algorithm is proposed for multi-input multi-output (MIMO) - orthogonal frequency division multiplexing (OFDM) system using linear minimum mean square error (LMMSE...A new channel estimation and data detection joint algorithm is proposed for multi-input multi-output (MIMO) - orthogonal frequency division multiplexing (OFDM) system using linear minimum mean square error (LMMSE)- based space-alternating generalized expectation-maximization (SAGE) algorithm. In the proposed algorithm, every sub-frame of the MIMO-OFDM system is divided into some OFDM sub-blocks and the LMMSE-based SAGE algorithm in each sub-block is used. At the head of each sub-flame, we insert training symbols which are used in the initial estimation at the beginning. Channel estimation of the previous sub-block is applied to the initial estimation in the current sub-block by the maximum-likelihood (ML) detection to update channel estimatjon and data detection by iteration until converge. Then all the sub-blocks can be finished in turn. Simulation results show that the proposed algorithm can improve the bit error rate (BER) performance.展开更多
The profile error evaluation of complex curves and surfaces expressed inparametric form is considered. The linear error model is established on the base of two hypothesesfirstly. Then the profile error evaluation is c...The profile error evaluation of complex curves and surfaces expressed inparametric form is considered. The linear error model is established on the base of two hypothesesfirstly. Then the profile error evaluation is converted into one of these optimal formulations:MINIMAX, MAXMIN and MINIDEX problems, which are easier to be solved than the initial form. To eachone of them, geometric condition and algebraic condition are presented to arbitrate whether theideal element reaches to the optimal position. Exchange algorithm is proven highly effective insearching for solutions to these optimization problems. At last some key problems in tolerance offreeform surfaces and curves in B spline method are discussed.展开更多
This paper proposes a robust method of parameter estimation and data classification for multiple-structural data based on the linear error in variable(EIV) model.The traditional EIV model fitting problem is analyzed...This paper proposes a robust method of parameter estimation and data classification for multiple-structural data based on the linear error in variable(EIV) model.The traditional EIV model fitting problem is analyzed and a robust growing algorithm is developed to extract the underlying linear structure of the observed data.Under the structural density assumption,the C-step technique borrowed from the Rousseeuw's robust MCD estimator is used to keep the algorithm robust and the mean-shift algorithm is adopted to ensure a good initialization.To eliminate the model ambiguities of the multiple-structural data,statistical hypotheses tests are used to refine the data classification and improve the accuracy of the model parameter estimation.Experiments show that the efficiency and robustness of the proposed algorithm.展开更多
In this paper, the definition of NURBS curve and a speed-controlled interpolation in which the feed rate is automatically adjusted in order to meet the specified chord error limit were discussed. Besides those, a defi...In this paper, the definition of NURBS curve and a speed-controlled interpolation in which the feed rate is automatically adjusted in order to meet the specified chord error limit were discussed. Besides those, a definition of linear interpolation error of post-processed data was proposed, which should be paid more attention to because it will not only reduce quality of the surface but also may cause interference and other unexpected trouble. In order to control the error, a robust algorithm was proposed, which successfully met a desired error limit through interpolating some essential CL data. The excellence of the proposed algorithm, in terms of its reliability and self-adaptiveness, has been proved by simulation results.展开更多
The evaluation of the minimum distance of linear block codes remains an open problem in coding theory, and it is not easy to determine its true value by classical methods, for this reason the problem has been solved i...The evaluation of the minimum distance of linear block codes remains an open problem in coding theory, and it is not easy to determine its true value by classical methods, for this reason the problem has been solved in the literature with heuristic techniques such as genetic algorithms and local search algorithms. In this paper we propose two approaches to attack the hardness of this problem. The first approach is based on genetic algorithms and it yield to good results comparing to another work based also on genetic algorithms. The second approach is based on a new randomized algorithm which we call 'Multiple Impulse Method (MIM)', where the principle is to search codewords locally around the all-zero codeword perturbed by a minimum level of noise, anticipating that the resultant nearest nonzero codewords will most likely contain the minimum Hamming-weight codeword whose Hamming weight is equal to the minimum distance of the linear code.展开更多
A residual carrier frequency offset (CFO) estimation scheme is proposed for the uplink of orthogonal frequency division multiple access (OFDMA) systems. Multiple access interference caused by CFOs in the uplink is...A residual carrier frequency offset (CFO) estimation scheme is proposed for the uplink of orthogonal frequency division multiple access (OFDMA) systems. Multiple access interference caused by CFOs in the uplink is investigated, as it severely affects the performance of a classical maximum likelihood (ML) frequency estimator. By the use of the estimated CFOs of the active users, the linear maximum mean square error (LMMSE) equalization is performed before the ML frequency estimator for the interference cancellation, which can help to sufficiently improve the estimation accuracy for the residual CFO of the incoming user. Analysis and simulations show that the modified ML estimator provides a tradeoff between estimation accuracy and computational complexity caused by the LMMSE interference cancellation, and the proposed method allows OFDMA systems flexibly allocating subcarriers to users.展开更多
For the linear model y_i=x_iθ+e_i, i=1, 2,…, let the error sequence {e_i}_i=1 be iidr.v.’s, with unknown density f(x). In this paper,a nonparametric estimation method based onthe residuals is proposed for estimatin...For the linear model y_i=x_iθ+e_i, i=1, 2,…, let the error sequence {e_i}_i=1 be iidr.v.’s, with unknown density f(x). In this paper,a nonparametric estimation method based onthe residuals is proposed for estimating f(x) and the consistency of the estimators is obtained.展开更多
Based on the Games-Chan algorithm and StampMartin algorithm, this paper provides some new algorithms to compute the error linear complexity spectrum of binary 2n-periodic se- quences. These new algorithms are clearer ...Based on the Games-Chan algorithm and StampMartin algorithm, this paper provides some new algorithms to compute the error linear complexity spectrum of binary 2n-periodic se- quences. These new algorithms are clearer and simpler than old algorithms, and they can quickly compute the error linear com- plexity spectrum of sequences according to different situations. We also discuss such algorithms and give some new results about linear complexity and error linear complexity of sequences.展开更多
Superconvergence and recovery type a posteriori error estimators are analyzed for Pian and Sumihara's 4-node hybrid stress quadrilateral finite element method for linear elasticity problems. Superconvergence of or...Superconvergence and recovery type a posteriori error estimators are analyzed for Pian and Sumihara's 4-node hybrid stress quadrilateral finite element method for linear elasticity problems. Superconvergence of order O(h^(1+min){α,1}) is established for both the displacement approximation in H^1-norm and the stress approximation in L^2-norm under a mesh assumption, where α > 0 is a parameter characterizing the distortion of meshes from parallelograms to quadrilaterals. Recovery type approximations for the displacement gradients and the stress tensor are constructed, and a posteriori error estimators based on the recovered quantities are shown to be asymptotically exact. Numerical experiments confirm the theoretical results.展开更多
We examine a simple averaging formula for the gradieni of linear finite elemelitsin Rd whose interpolation order in the Lq-norm is O(h2) for d < 2q and nonuniformtriangulations. For elliptic problems in R2 we deriv...We examine a simple averaging formula for the gradieni of linear finite elemelitsin Rd whose interpolation order in the Lq-norm is O(h2) for d < 2q and nonuniformtriangulations. For elliptic problems in R2 we derive an interior superconvergencefor the averaged gradient over quasiuniform triangulations. Local error estimatesup to a regular part of the boundary and the effect of numerical integration arealso investigated.展开更多
基金Project supported by the National Key R&D Program of China(Grant No.2018YFB2002405)the National Natural Science Foundation of China(Grant No.61903013)。
文摘Zero-field single-beam atomic magnetometers with transverse parametric modulation for ultra-weak magnetic field detection have attracted widespread attention recently.In this study,we present a comprehensive response model and propose a modification method of conventional first harmonic response by introducing the second harmonic correction.The proposed modification method gives improvement in dynamic range and reduction of linearity error.Additionally,our modification method shows suppression of response instability caused by optical intensity and frequency fluctuations.An atomic magnetometer with single-beam configuration is built to compare the performance between our proposed method and the conventional method.The results indicate that our method’s magnetic field response signal achieves a 5-fold expansion of dynamic range from 2 nT to 10 nT,with the linearity error decreased from 5%to 1%.Under the fluctuations of 5%for optical intensity and±15 GHz detuning of frequency,the proposed modification method maintains intensityrelated instability less than 1%and frequency-related instability less than 8%while the conventional method suffers 15%and 38%,respectively.Our method is promising for future high-sensitive and long-term stable optically pumped atomic sensors.
基金supported by National Natural Science Foundation of China(62371225,62371227)。
文摘Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.
基金Supported by the National High Technology ResearchDevelopment Program of China (863 Program)(No.2001AA 123014)
文摘The turbo equalization approach is studied for Orthogonal Frequency Division Multiplexing (OFDM) system with combined error control coding and linear precoding. While previous literatures employed linear precodcr of small size for complexity reasons, this paper proposes to use a linear precoder of size larger than or equal to the maximum length of the equivalent discrete-time channel in order to achieve full frequency diversity and reduce complexities of the error control coder/decoder. Also a low complexity Linear Minimum Mean Square Error (LMMSE) turbo equalizer is derived for the receiver. Through simulation and performance analysis, it is shown that the performance of the proposed scheme over frequency selective fading channel reaches the matched filter bound; compared with the same coded OFDM without linear precoding, the proposed scheme shows an Signal-to-Noise Ratio (SNR) improvement of at least 6dB at a bit error rate of 10 6 over a multipath channel with exponential power delay profile. Convergence behavior of the proposed scheme with turbo equalization using various type of linear precoder/transformer, various interleaver size and error control coder of various constraint length is also investigated.
文摘Statistical properties of stock market time series and the implication of their Hurst exponents are discussed. Hurst exponents of DJIA (Dow Jones Industrial Average) components are tested using re scaled range analysis. In addition to the original stock return series, the linear prediction errors of the daily returns are also tested. Numerical results show that the Hurst exponent analysis can provide some information about the statistical properties of the financial time series.
文摘Higher transmission rate is one of the technological features of promi-nently used wireless communication namely Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing(MIMO–OFDM).One among an effective solution for channel estimation in wireless communication system,spe-cifically in different environments is Deep Learning(DL)method.This research greatly utilizes channel estimator on the basis of Convolutional Neural Network Auto Encoder(CNNAE)classifier for MIMO-OFDM systems.A CNNAE classi-fier is one among Deep Learning(DL)algorithm,in which video signal is fed as input by allotting significant learnable weights and biases in various aspects/objects for video signal and capable of differentiating from one another.Improved performances are achieved by using CNNAE based channel estimation,in which extension is done for channel selection as well as achieve enhanced performances numerically,when compared with conventional estimators in quite a lot of scenar-ios.Considering reduction in number of parameters involved and re-usability of weights,CNNAE based channel estimation is quite suitable and properlyfits to the video signal.CNNAE classifier weights updation are done with minimized Sig-nal to Noise Ratio(SNR),Bit Error Rate(BER)and Mean Square Error(MSE).
基金Supported by the National Natural Science Foundation of China (No. 61001105), the National Science and Technology Major Projects (No. 2011ZX03001- 007- 03) and Beijing Natural Science Foundation (No. 4102043).
文摘A new channel estimation and data detection joint algorithm is proposed for multi-input multi-output (MIMO) - orthogonal frequency division multiplexing (OFDM) system using linear minimum mean square error (LMMSE)- based space-alternating generalized expectation-maximization (SAGE) algorithm. In the proposed algorithm, every sub-frame of the MIMO-OFDM system is divided into some OFDM sub-blocks and the LMMSE-based SAGE algorithm in each sub-block is used. At the head of each sub-flame, we insert training symbols which are used in the initial estimation at the beginning. Channel estimation of the previous sub-block is applied to the initial estimation in the current sub-block by the maximum-likelihood (ML) detection to update channel estimatjon and data detection by iteration until converge. Then all the sub-blocks can be finished in turn. Simulation results show that the proposed algorithm can improve the bit error rate (BER) performance.
基金This project is supported by National Natural Science Foundation of China (N.59990470).
文摘The profile error evaluation of complex curves and surfaces expressed inparametric form is considered. The linear error model is established on the base of two hypothesesfirstly. Then the profile error evaluation is converted into one of these optimal formulations:MINIMAX, MAXMIN and MINIDEX problems, which are easier to be solved than the initial form. To eachone of them, geometric condition and algebraic condition are presented to arbitrate whether theideal element reaches to the optimal position. Exchange algorithm is proven highly effective insearching for solutions to these optimization problems. At last some key problems in tolerance offreeform surfaces and curves in B spline method are discussed.
基金supported by the National High Technology Research and Development Program of China (863 Program) (2007AA04Z227)
文摘This paper proposes a robust method of parameter estimation and data classification for multiple-structural data based on the linear error in variable(EIV) model.The traditional EIV model fitting problem is analyzed and a robust growing algorithm is developed to extract the underlying linear structure of the observed data.Under the structural density assumption,the C-step technique borrowed from the Rousseeuw's robust MCD estimator is used to keep the algorithm robust and the mean-shift algorithm is adopted to ensure a good initialization.To eliminate the model ambiguities of the multiple-structural data,statistical hypotheses tests are used to refine the data classification and improve the accuracy of the model parameter estimation.Experiments show that the efficiency and robustness of the proposed algorithm.
文摘In this paper, the definition of NURBS curve and a speed-controlled interpolation in which the feed rate is automatically adjusted in order to meet the specified chord error limit were discussed. Besides those, a definition of linear interpolation error of post-processed data was proposed, which should be paid more attention to because it will not only reduce quality of the surface but also may cause interference and other unexpected trouble. In order to control the error, a robust algorithm was proposed, which successfully met a desired error limit through interpolating some essential CL data. The excellence of the proposed algorithm, in terms of its reliability and self-adaptiveness, has been proved by simulation results.
文摘The evaluation of the minimum distance of linear block codes remains an open problem in coding theory, and it is not easy to determine its true value by classical methods, for this reason the problem has been solved in the literature with heuristic techniques such as genetic algorithms and local search algorithms. In this paper we propose two approaches to attack the hardness of this problem. The first approach is based on genetic algorithms and it yield to good results comparing to another work based also on genetic algorithms. The second approach is based on a new randomized algorithm which we call 'Multiple Impulse Method (MIM)', where the principle is to search codewords locally around the all-zero codeword perturbed by a minimum level of noise, anticipating that the resultant nearest nonzero codewords will most likely contain the minimum Hamming-weight codeword whose Hamming weight is equal to the minimum distance of the linear code.
基金Supported by the National High Technology Research and Development Programme of China (No. 2009AA011501), National Basic Research Program of China (No. 2007CB310608), the Fundamental Research Funds for the Central Universities in China, and China Postdoctoral Science Foundation funded project.
文摘A residual carrier frequency offset (CFO) estimation scheme is proposed for the uplink of orthogonal frequency division multiple access (OFDMA) systems. Multiple access interference caused by CFOs in the uplink is investigated, as it severely affects the performance of a classical maximum likelihood (ML) frequency estimator. By the use of the estimated CFOs of the active users, the linear maximum mean square error (LMMSE) equalization is performed before the ML frequency estimator for the interference cancellation, which can help to sufficiently improve the estimation accuracy for the residual CFO of the incoming user. Analysis and simulations show that the modified ML estimator provides a tradeoff between estimation accuracy and computational complexity caused by the LMMSE interference cancellation, and the proposed method allows OFDMA systems flexibly allocating subcarriers to users.
基金The project supported by National Natural Science Foundation of China Crant 18971061
文摘For the linear model y_i=x_iθ+e_i, i=1, 2,…, let the error sequence {e_i}_i=1 be iidr.v.’s, with unknown density f(x). In this paper,a nonparametric estimation method based onthe residuals is proposed for estimating f(x) and the consistency of the estimators is obtained.
基金Supported by the National Natural Science Foundation of China (61174085, 61170270, 61121061)
文摘Based on the Games-Chan algorithm and StampMartin algorithm, this paper provides some new algorithms to compute the error linear complexity spectrum of binary 2n-periodic se- quences. These new algorithms are clearer and simpler than old algorithms, and they can quickly compute the error linear com- plexity spectrum of sequences according to different situations. We also discuss such algorithms and give some new results about linear complexity and error linear complexity of sequences.
基金supported by National Natural Science Foundation of China (Grant No. 11171239)Major Research Plan of National Natural Science Foundation of China (Grant No. 91430105)
文摘Superconvergence and recovery type a posteriori error estimators are analyzed for Pian and Sumihara's 4-node hybrid stress quadrilateral finite element method for linear elasticity problems. Superconvergence of order O(h^(1+min){α,1}) is established for both the displacement approximation in H^1-norm and the stress approximation in L^2-norm under a mesh assumption, where α > 0 is a parameter characterizing the distortion of meshes from parallelograms to quadrilaterals. Recovery type approximations for the displacement gradients and the stress tensor are constructed, and a posteriori error estimators based on the recovered quantities are shown to be asymptotically exact. Numerical experiments confirm the theoretical results.
文摘We examine a simple averaging formula for the gradieni of linear finite elemelitsin Rd whose interpolation order in the Lq-norm is O(h2) for d < 2q and nonuniformtriangulations. For elliptic problems in R2 we derive an interior superconvergencefor the averaged gradient over quasiuniform triangulations. Local error estimatesup to a regular part of the boundary and the effect of numerical integration arealso investigated.