In this article, the zeros of solutions of differential equation f^(k)(z)+A(z)f(z) = 0, are studied, where k 2, A(z) = B(e^z), B(ζ) = g1(1/ζ) + g2(ζ), g1 and g2 being entire functions with g2 tr...In this article, the zeros of solutions of differential equation f^(k)(z)+A(z)f(z) = 0, are studied, where k 2, A(z) = B(e^z), B(ζ) = g1(1/ζ) + g2(ζ), g1 and g2 being entire functions with g2 transcendental and σ(g2) not equal to a positive integer or infinity. It is shown that any linearly independent solutions f1, f2, . . . , fk of Eq.(*) satisfy λe(f1 . . . fk) ≥ σ(g2) under the condition that fj(z) and fj(z+ 2πi) (j = 1, . . . , k) are linearly dependent.展开更多
Two perturbation results on the linear differential function f″ + Π(z)A(z)f = 0 are obtained, where Π(z) and A(z) are periodic entire functions with period 2πi and σe(Π) 〈 σe(A).
We first convert the angular Teukolsky equation under the special condition ofτ≠0,s≠0,m=0 into a confluent Heun differential equation(CHDE)by taking different function transformation and variable substitution.And t...We first convert the angular Teukolsky equation under the special condition ofτ≠0,s≠0,m=0 into a confluent Heun differential equation(CHDE)by taking different function transformation and variable substitution.And then according to the characteristics of both CHDE and its analytical solution expressed by a confluent Heun function(CHF),we find two linearly dependent solutions corresponding to the same eigenstate,from which we obtain a precise energy spectrum equation by constructing a Wronskian determinant.After that,we are able to localize the positions of the eigenvalues on the real axis or on the complex plane whenτis a real number,a pure imaginary number,and a complex number,respectively and we notice that the relation between the quantum number l and the spin weight quantum number s satisfies the relation l=∣s∣+n,n=0,1,2….The exact eigenvalues and the corresponding normalized eigenfunctions given by the CHF are obtained with the aid of Maple.The features of the angular probability distribution(APD)and the linearly dependent characteristics of two eigenfunctions corresponding to the same eigenstate are discussed.We find that for a real numberτ,the eigenvalue is a real number and the eigenfunction is a real function,and the eigenfunction system is an orthogonal complete system,and the APD is asymmetric in the northern and southern hemispheres.For a pure imaginary numberτ,the eigenvalue is still a real number and the eigenfunction is a complex function,but the APD is symmetric in the northern and southern hemispheres.Whenτis a complex number,the eigenvalue is a complex number,the eigenfunction is still a complex function,and the APD in the northern and southern hemispheres is also asymmetric.Finally,an approximate expression of complex eigenvalues is obtained when n is greater than∣s∣.展开更多
基金supported by the National Natural Foundation of China (10871076)the Startup Foundation for Doctors of Jiangxi Normal University (2614)
文摘In this article, the zeros of solutions of differential equation f^(k)(z)+A(z)f(z) = 0, are studied, where k 2, A(z) = B(e^z), B(ζ) = g1(1/ζ) + g2(ζ), g1 and g2 being entire functions with g2 transcendental and σ(g2) not equal to a positive integer or infinity. It is shown that any linearly independent solutions f1, f2, . . . , fk of Eq.(*) satisfy λe(f1 . . . fk) ≥ σ(g2) under the condition that fj(z) and fj(z+ 2πi) (j = 1, . . . , k) are linearly dependent.
基金Supported by the College's Ph.D Foundation of China(20050574002)the Natural Science Foundation of Guangdong Province(06025059)
文摘Two perturbation results on the linear differential function f″ + Π(z)A(z)f = 0 are obtained, where Π(z) and A(z) are periodic entire functions with period 2πi and σe(Π) 〈 σe(A).
基金supported by the National Natural Science Foundation of China(Grant No.11975196)partially by 20220355-SIP,IPN。
文摘We first convert the angular Teukolsky equation under the special condition ofτ≠0,s≠0,m=0 into a confluent Heun differential equation(CHDE)by taking different function transformation and variable substitution.And then according to the characteristics of both CHDE and its analytical solution expressed by a confluent Heun function(CHF),we find two linearly dependent solutions corresponding to the same eigenstate,from which we obtain a precise energy spectrum equation by constructing a Wronskian determinant.After that,we are able to localize the positions of the eigenvalues on the real axis or on the complex plane whenτis a real number,a pure imaginary number,and a complex number,respectively and we notice that the relation between the quantum number l and the spin weight quantum number s satisfies the relation l=∣s∣+n,n=0,1,2….The exact eigenvalues and the corresponding normalized eigenfunctions given by the CHF are obtained with the aid of Maple.The features of the angular probability distribution(APD)and the linearly dependent characteristics of two eigenfunctions corresponding to the same eigenstate are discussed.We find that for a real numberτ,the eigenvalue is a real number and the eigenfunction is a real function,and the eigenfunction system is an orthogonal complete system,and the APD is asymmetric in the northern and southern hemispheres.For a pure imaginary numberτ,the eigenvalue is still a real number and the eigenfunction is a complex function,but the APD is symmetric in the northern and southern hemispheres.Whenτis a complex number,the eigenvalue is a complex number,the eigenfunction is still a complex function,and the APD in the northern and southern hemispheres is also asymmetric.Finally,an approximate expression of complex eigenvalues is obtained when n is greater than∣s∣.