Wireless Local Area Networks (WLANs) such as IEEE 802.11a/g and Hiperlan/2 utilise numerous transmission modes, each providing different throughputs and reliability levels. Many link adaptation algorithms proposed in ...Wireless Local Area Networks (WLANs) such as IEEE 802.11a/g and Hiperlan/2 utilise numerous transmission modes, each providing different throughputs and reliability levels. Many link adaptation algorithms proposed in the literature either maximise the error-free data throughput based on channel conditions or are based on the number of failed transmissions. However, these algo- rithms do not take into account the content of the data stream and strongly rely on the use of Automatic Repeat Requests (ARQs). Low latency video applications such as real-time video transmission may require no retransmission, or only a limited number of retrans- missions. Moreover, completely error-free communication is not essential, especially if robust video compression techniques are applied. In such scenarios, improved decoded video quality can be obtained with a video stream transmitted at a higher bit rate using a higher link speed but with some degree of transmission error, rather than an error-free video stream at a lower bit rate using a lower link speed. In this work, we investigate a link adaptation scheme that improves the Quality of Service (QoS) for video transmission, based on the overall received video quality (Peak Signal to Noise Ratio, PSNR), rather than by maximising the error-free throughput. We also study a practical link adaptation approach that uses PER thresholds at the PHY layer. An empirical study showed that thresholds for switching from one mode to another are much lower (almost error free) than those currently used by throughput based schemes. We show that traditional link adaptation strategies are not appropriate for real-time video transmission with no retransmis- sion. Simulation results using the H.264 video compression standard over IEEE 802.11a are presented.展开更多
A device-to-device (D2D) communication mode underlaying cellular network in a single- cell environment is introduced. A practical method based on link adaptation with automatic repeat request (ARQ) is presented. L...A device-to-device (D2D) communication mode underlaying cellular network in a single- cell environment is introduced. A practical method based on link adaptation with automatic repeat request (ARQ) is presented. Link adaptation technique, which combines adaptive modulation and coding ( AMC ) with truncated ARQ, can maximize the cellular UEs' data rate under prescribed delay and performance constraints. The proposed method can maximize the total transmission rate when an outage probability is determined. Numerical results show that with proper power control, the in- terference between the two links can be coordinated to increase the sum rate without overwhelming the cellular service.展开更多
A novel link adaptation scheme using linear Auto Regressive (AR) model channel estimation algorithm to enhance the performance of auto rate selection mechanism in IEEE 802.11g is proposed. This scheme can overcome t...A novel link adaptation scheme using linear Auto Regressive (AR) model channel estimation algorithm to enhance the performance of auto rate selection mechanism in IEEE 802.11g is proposed. This scheme can overcome the low efficiency caused by time interval between the time when Received Signal Strength (RSS) is measured and the time when rate is selected. The best rate is selected based on data payload length, frame retry count and the estimated RSS, which is estimated from recorded RSSs. Simulation results show that the proposed scheme enhances mean throughput performance up to 7%, in saturation state, and up to 24% in finite load state compared with those non-estimation schemes, performance enhancements in average drop rate and average number of transmission attempts per data frame delivery also validate the effectiveness of the proposed schelne.展开更多
In term of the features of 3G system, a novel AMR link adaptation strategy for 3G system is proposed. The impacts of AMR codec modes and power control on traffic quality of service are taken into account in the strate...In term of the features of 3G system, a novel AMR link adaptation strategy for 3G system is proposed. The impacts of AMR codec modes and power control on traffic quality of service are taken into account in the strategy at the same time. By synthetically comparing the signal-to-interference ratio value with the switching threshold and comparing the transmission power with its threshold, radio resource management can always keep each link on its proper codec mode with the corresponding optimal power level to achieve both robust speech quality and link capacity enhancement. Based on the WCDMA FDD uplink link-level simulation platform, AMR link adaptation platform is constructed. Simulation results show that the algorithm can track the fast change of channel conditions and select the most robust codec mode, thus the synthetic speech quality of AMR is better than that of signal mode during a wide range of channel conditions. The result will provide a reference strategy for AMR link adaptation of 3G system.展开更多
UAV data link has been considered as an important part of UAV communication system, through which the UAV could communicate with warships. However, constant coding and modulation scheme that UAV adopts does not make f...UAV data link has been considered as an important part of UAV communication system, through which the UAV could communicate with warships. However, constant coding and modulation scheme that UAV adopts does not make full use of the channel capacity when UAV communicates with warships in a good channel environment. In order to improve channel capacity and spectral efficiency, adaptive coded modulation technology is studied. Based on maritime channel model, SNR estimation technology and adaptive threshold determination technology, the simulation of UAV data link communication is carried out in this paper. Theoretic analysis and simulation results show that according to changes in maritime channel state, UAV can dynamically adjust the adaptive coded modulation scheme on the condition of meeting target Bit-Error-Rate (BER), the maximum amount of data transfer is non-adaptive systems three times.展开更多
In this paper, a novel adaptive fuzzy control scheme is presented. The controller is constructed by using a table lookup scheme and self tuning techniques, which includes the identification block, the fuzzification,...In this paper, a novel adaptive fuzzy control scheme is presented. The controller is constructed by using a table lookup scheme and self tuning techniques, which includes the identification block, the fuzzification, the updating rule base, the defuzzification, and the crisp controller (sub controller), etc. The adaptive fuzzy controller is designed in detail by means of a triangular membership function and the center of gravity method. The control scheme addressed here is implemented to control the motion of the end effector of a two link constrained flexible manipulator. Computer simulation results show that the novel adaptive fuzzy control scheme works quite well.展开更多
A novel nonlinear adaptive control method is presented for a near-space hypersonic vehicle (NHV) in the presence of strong uncertainties and disturbances. The control law consists of the optimal generalized predicti...A novel nonlinear adaptive control method is presented for a near-space hypersonic vehicle (NHV) in the presence of strong uncertainties and disturbances. The control law consists of the optimal generalized predictive controller (OGPC) and the functional link network (FLN) direct adaptive law. OGPC is a continuous-time nonlinear predictive control law. The FLN adaptive law is used to offset the unknown uncertainties and disturbances in a flight through the online learning. The learning process does not need any offline training phase. The stability analyses of the NHV close-loop system are provided and it is proved that the system error and the weight learning error are uniformly ultimately hounded. Simulation results show the satisfactory performance of the con- troller for the attitude tracking.展开更多
The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link ...The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link network(FLN) control method for an NHV with dynamical thrust and parameter uncertainties.The approach devises a new partially-feedback-functional-link-network(PFFLN) adaptive law and combines it with the nonlinear generalized predictive control(NGPC) algorithm.The PFFLN is employed for approximating uncertainties in flight.Its weights are online tuned based on Lyapunov stability theorem for the first time.The learning process does not need any offline training phase.Additionally,a robust controller with an adaptive gain is designed to offset the approximation error.Finally,simulation results show a satisfactory performance for the NHV attitude tracking,and also illustrate the controller's robustness.展开更多
In this paper, an adaptive proportional-derivative sliding mode control(APD-SMC) law, is proposed for 2D underactuated overhead crane systems. The proposed controller has the advantages of simple structure, easy to im...In this paper, an adaptive proportional-derivative sliding mode control(APD-SMC) law, is proposed for 2D underactuated overhead crane systems. The proposed controller has the advantages of simple structure, easy to implement of PD control, strong robustness of SMC with respect to external disturbances and uncertain system parameters, and adaptation for unknown system dynamics associated with the feedforward parts. In the proposed APD-SMC law, the PD control part is used to stabilize the controlled system, the SMC part is used to compensate the external disturbances and system uncertainties,and the adaptive control part is utilized to estimate the unknown system parameters. The coupling behavior between the trolley movement and the payload swing is enhanced and, therefore, the transient performance of the proposed controller is improved.The Lyapunov techniques and the La Salle's invariance theorem are employed in to support the theoretical derivations. Experimental results are provided to validate the superior performance of the proposed control law.展开更多
In this paper we used the probability distribution of the average channel gain of the fading channel to analyze the degree of fading effects on both the PER (packet error rate) and the throughput in OFDM systems. Inst...In this paper we used the probability distribution of the average channel gain of the fading channel to analyze the degree of fading effects on both the PER (packet error rate) and the throughput in OFDM systems. Instead of solely examining the average received SNR (signal-to-noise ratio) value of a packet, considering the whole distribution of the average received SNR allows us to aggregate a better selection of the mode switching thresholds in the rate adaptive 802.11 a/g WLAN. This paper demonstrates that the set of mode switching thresholds can be determined for each individual target , so that the optimal throughput performance is obtained on a per target basis. Numerical results show that mode switching thresholds should be reduced with the lowering of target values. This conclusion could have significant implications for improving the performances of location (distance)-dependent mobile applications, since the determinations of target values are closely related to the distances between mobile devices and the access point.展开更多
In view of the low ranging efficiency of the conventional fixed frame-length algorithm in the inter-satellite link,an adaptive frame-length algorithm is proposed. The frame length is adjusted adaptively according to t...In view of the low ranging efficiency of the conventional fixed frame-length algorithm in the inter-satellite link,an adaptive frame-length algorithm is proposed. The frame length is adjusted adaptively according to the results of ranging and velocity measuring to improve ranging efficiency. Buffers which enable the frame length to be selected discretely and adaptively are introduced to avoid frequent hopping of the frame-length.Frame length marker is created to automatically identify the frame-length for frame synchronization procedures in receivers. The feasibility and the validity of the proposed algorithm to improve the efficiency of ranging are verified through both theoretic analysis and simulation,and the efficiency improves up to 88% when there are five buffers. This improvement can be further enhanced by increasing the number of buffers. Proper allocation of inter-satellite buffers is required to make a balance between the ranging efficiency and the system complexity.展开更多
The design of a turbofan rotor speed control system, using model reference adaptive control(MRAC) method with input and output measurements, is discussed for the purpose of practical application. The nonlinear compe...The design of a turbofan rotor speed control system, using model reference adaptive control(MRAC) method with input and output measurements, is discussed for the purpose of practical application. The nonlinear compensator based on functional link neural network is used to deal with the engine nonlinearity and the hardware-in-loop simulation is also developed. The results show that the nonlinear MRAC controller has the adequate performance of compensating and adapting nonlinearity arising from the change of engine state or working environment. Such feature demonstrates potential practical applications of MRAC for aeroengine control system.展开更多
文摘Wireless Local Area Networks (WLANs) such as IEEE 802.11a/g and Hiperlan/2 utilise numerous transmission modes, each providing different throughputs and reliability levels. Many link adaptation algorithms proposed in the literature either maximise the error-free data throughput based on channel conditions or are based on the number of failed transmissions. However, these algo- rithms do not take into account the content of the data stream and strongly rely on the use of Automatic Repeat Requests (ARQs). Low latency video applications such as real-time video transmission may require no retransmission, or only a limited number of retrans- missions. Moreover, completely error-free communication is not essential, especially if robust video compression techniques are applied. In such scenarios, improved decoded video quality can be obtained with a video stream transmitted at a higher bit rate using a higher link speed but with some degree of transmission error, rather than an error-free video stream at a lower bit rate using a lower link speed. In this work, we investigate a link adaptation scheme that improves the Quality of Service (QoS) for video transmission, based on the overall received video quality (Peak Signal to Noise Ratio, PSNR), rather than by maximising the error-free throughput. We also study a practical link adaptation approach that uses PER thresholds at the PHY layer. An empirical study showed that thresholds for switching from one mode to another are much lower (almost error free) than those currently used by throughput based schemes. We show that traditional link adaptation strategies are not appropriate for real-time video transmission with no retransmis- sion. Simulation results using the H.264 video compression standard over IEEE 802.11a are presented.
基金Supported by the China Major National S&T Program(2010ZX03003-003)China-EU International Scientific and Technological Cooperation Program(0902)+1 种基金the Sino-Swedish IMT-Advanced and Beyond Cooperative Program(2008DFA11780)the Open Project Program of Guangdong Provincial Key Laboratory of Short-Range Wireless Detection and Communication and PCSIRT-IRT(1005)
文摘A device-to-device (D2D) communication mode underlaying cellular network in a single- cell environment is introduced. A practical method based on link adaptation with automatic repeat request (ARQ) is presented. Link adaptation technique, which combines adaptive modulation and coding ( AMC ) with truncated ARQ, can maximize the cellular UEs' data rate under prescribed delay and performance constraints. The proposed method can maximize the total transmission rate when an outage probability is determined. Numerical results show that with proper power control, the in- terference between the two links can be coordinated to increase the sum rate without overwhelming the cellular service.
基金Partly supported by the National Hi-Tech Research and Development Program of China (863 Program) (No.2003AA143040).
文摘A novel link adaptation scheme using linear Auto Regressive (AR) model channel estimation algorithm to enhance the performance of auto rate selection mechanism in IEEE 802.11g is proposed. This scheme can overcome the low efficiency caused by time interval between the time when Received Signal Strength (RSS) is measured and the time when rate is selected. The best rate is selected based on data payload length, frame retry count and the estimated RSS, which is estimated from recorded RSSs. Simulation results show that the proposed scheme enhances mean throughput performance up to 7%, in saturation state, and up to 24% in finite load state compared with those non-estimation schemes, performance enhancements in average drop rate and average number of transmission attempts per data frame delivery also validate the effectiveness of the proposed schelne.
文摘In term of the features of 3G system, a novel AMR link adaptation strategy for 3G system is proposed. The impacts of AMR codec modes and power control on traffic quality of service are taken into account in the strategy at the same time. By synthetically comparing the signal-to-interference ratio value with the switching threshold and comparing the transmission power with its threshold, radio resource management can always keep each link on its proper codec mode with the corresponding optimal power level to achieve both robust speech quality and link capacity enhancement. Based on the WCDMA FDD uplink link-level simulation platform, AMR link adaptation platform is constructed. Simulation results show that the algorithm can track the fast change of channel conditions and select the most robust codec mode, thus the synthetic speech quality of AMR is better than that of signal mode during a wide range of channel conditions. The result will provide a reference strategy for AMR link adaptation of 3G system.
文摘UAV data link has been considered as an important part of UAV communication system, through which the UAV could communicate with warships. However, constant coding and modulation scheme that UAV adopts does not make full use of the channel capacity when UAV communicates with warships in a good channel environment. In order to improve channel capacity and spectral efficiency, adaptive coded modulation technology is studied. Based on maritime channel model, SNR estimation technology and adaptive threshold determination technology, the simulation of UAV data link communication is carried out in this paper. Theoretic analysis and simulation results show that according to changes in maritime channel state, UAV can dynamically adjust the adaptive coded modulation scheme on the condition of meeting target Bit-Error-Rate (BER), the maximum amount of data transfer is non-adaptive systems three times.
文摘In this paper, a novel adaptive fuzzy control scheme is presented. The controller is constructed by using a table lookup scheme and self tuning techniques, which includes the identification block, the fuzzification, the updating rule base, the defuzzification, and the crisp controller (sub controller), etc. The adaptive fuzzy controller is designed in detail by means of a triangular membership function and the center of gravity method. The control scheme addressed here is implemented to control the motion of the end effector of a two link constrained flexible manipulator. Computer simulation results show that the novel adaptive fuzzy control scheme works quite well.
基金Supported by the National Nature Science Foundation of China (90716028)~~
文摘A novel nonlinear adaptive control method is presented for a near-space hypersonic vehicle (NHV) in the presence of strong uncertainties and disturbances. The control law consists of the optimal generalized predictive controller (OGPC) and the functional link network (FLN) direct adaptive law. OGPC is a continuous-time nonlinear predictive control law. The FLN adaptive law is used to offset the unknown uncertainties and disturbances in a flight through the online learning. The learning process does not need any offline training phase. The stability analyses of the NHV close-loop system are provided and it is proved that the system error and the weight learning error are uniformly ultimately hounded. Simulation results show the satisfactory performance of the con- troller for the attitude tracking.
基金supported by the National Natural Science Foundation of China (9071602860974106)
文摘The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link network(FLN) control method for an NHV with dynamical thrust and parameter uncertainties.The approach devises a new partially-feedback-functional-link-network(PFFLN) adaptive law and combines it with the nonlinear generalized predictive control(NGPC) algorithm.The PFFLN is employed for approximating uncertainties in flight.Its weights are online tuned based on Lyapunov stability theorem for the first time.The learning process does not need any offline training phase.Additionally,a robust controller with an adaptive gain is designed to offset the approximation error.Finally,simulation results show a satisfactory performance for the NHV attitude tracking,and also illustrate the controller's robustness.
基金supported in part by the National High Technology Research and Development Program of China(863 Program)(2015AA042307)Shandong Provincial Scientific and Technological Development Foundation(2014GGX103038)+3 种基金Shandong Provincial Independent Innovation and Achievement Transformation Special Foundation(2015ZDXX0101E01)National Natural Science Fundation of China(NSFC)Joint Fund of Shandong Province(U1706228)the Fundamental Research Funds of Shandong University(2015JC027)
文摘In this paper, an adaptive proportional-derivative sliding mode control(APD-SMC) law, is proposed for 2D underactuated overhead crane systems. The proposed controller has the advantages of simple structure, easy to implement of PD control, strong robustness of SMC with respect to external disturbances and uncertain system parameters, and adaptation for unknown system dynamics associated with the feedforward parts. In the proposed APD-SMC law, the PD control part is used to stabilize the controlled system, the SMC part is used to compensate the external disturbances and system uncertainties,and the adaptive control part is utilized to estimate the unknown system parameters. The coupling behavior between the trolley movement and the payload swing is enhanced and, therefore, the transient performance of the proposed controller is improved.The Lyapunov techniques and the La Salle's invariance theorem are employed in to support the theoretical derivations. Experimental results are provided to validate the superior performance of the proposed control law.
文摘In this paper we used the probability distribution of the average channel gain of the fading channel to analyze the degree of fading effects on both the PER (packet error rate) and the throughput in OFDM systems. Instead of solely examining the average received SNR (signal-to-noise ratio) value of a packet, considering the whole distribution of the average received SNR allows us to aggregate a better selection of the mode switching thresholds in the rate adaptive 802.11 a/g WLAN. This paper demonstrates that the set of mode switching thresholds can be determined for each individual target , so that the optimal throughput performance is obtained on a per target basis. Numerical results show that mode switching thresholds should be reduced with the lowering of target values. This conclusion could have significant implications for improving the performances of location (distance)-dependent mobile applications, since the determinations of target values are closely related to the distances between mobile devices and the access point.
基金Supported by the National High Technology Research and Development Program of China(2013AA1548)
文摘In view of the low ranging efficiency of the conventional fixed frame-length algorithm in the inter-satellite link,an adaptive frame-length algorithm is proposed. The frame length is adjusted adaptively according to the results of ranging and velocity measuring to improve ranging efficiency. Buffers which enable the frame length to be selected discretely and adaptively are introduced to avoid frequent hopping of the frame-length.Frame length marker is created to automatically identify the frame-length for frame synchronization procedures in receivers. The feasibility and the validity of the proposed algorithm to improve the efficiency of ranging are verified through both theoretic analysis and simulation,and the efficiency improves up to 88% when there are five buffers. This improvement can be further enhanced by increasing the number of buffers. Proper allocation of inter-satellite buffers is required to make a balance between the ranging efficiency and the system complexity.
文摘The design of a turbofan rotor speed control system, using model reference adaptive control(MRAC) method with input and output measurements, is discussed for the purpose of practical application. The nonlinear compensator based on functional link neural network is used to deal with the engine nonlinearity and the hardware-in-loop simulation is also developed. The results show that the nonlinear MRAC controller has the adequate performance of compensating and adapting nonlinearity arising from the change of engine state or working environment. Such feature demonstrates potential practical applications of MRAC for aeroengine control system.