The transmission of scientific data over long distances is required to enable interplanetary science expeditions. Current approaches include transmitting all collected data or transmitting low resolution data to enabl...The transmission of scientific data over long distances is required to enable interplanetary science expeditions. Current approaches include transmitting all collected data or transmitting low resolution data to enable ground controller review and selection of data for transmission. Model-based data transmission (MBDT) seeks to increase the amount of knowledge conveyed per unit of data transmitted by comparing high-resolution data collected in situ to a pre-existing (or potentially co-transmitted) model. This paper describes the application of MBDT to gravitational data and characterizes its utility and performance. This is performed by applying the MBDT technique to a selection of gravitational data previously collected for the Earth and comparing the transmission requirements to the level required for raw data transmis-sion and non-application-aware compression. Levels of transmission reduction up to 31.8% (without the use maximum-error-thresholding) and up to 97.17% (with the use of maximum-error-thresholding) resulted. These levels significantly exceed what is possible with non-application-aware compression.展开更多
文摘The transmission of scientific data over long distances is required to enable interplanetary science expeditions. Current approaches include transmitting all collected data or transmitting low resolution data to enable ground controller review and selection of data for transmission. Model-based data transmission (MBDT) seeks to increase the amount of knowledge conveyed per unit of data transmitted by comparing high-resolution data collected in situ to a pre-existing (or potentially co-transmitted) model. This paper describes the application of MBDT to gravitational data and characterizes its utility and performance. This is performed by applying the MBDT technique to a selection of gravitational data previously collected for the Earth and comparing the transmission requirements to the level required for raw data transmis-sion and non-application-aware compression. Levels of transmission reduction up to 31.8% (without the use maximum-error-thresholding) and up to 97.17% (with the use of maximum-error-thresholding) resulted. These levels significantly exceed what is possible with non-application-aware compression.