It is to establish existence of a weak solution for quasilinear elliptic problems assuming that the nonlinear term is critical.The potential V is bounded from below and above by positive constants.Because we are consi...It is to establish existence of a weak solution for quasilinear elliptic problems assuming that the nonlinear term is critical.The potential V is bounded from below and above by positive constants.Because we are considering a critical term which interacts with higher eigenvalues for the linear problem,we need to apply a linking theorem.Notice that the lack of compactness,which comes from critical problems and the fact that we are working in the whole space,are some obstacles for us to ensure existence of solutions for quasilinear elliptic problems.The main feature in this article is to restore some compact results which are essential in variational methods.Recall that compactness conditions such as the Palais-Smale condition for the associated energy functional is not available in our setting.This difficulty is overcame by taking into account some fine estimates on the critical level for an auxiliary energy functional.展开更多
We study nonautonomonus second order periodic systems with a nonslnooth potential. Using the nonsmooth critical theory, we establish the existence of at least two nontrivial solutions. Our framework incorporates large...We study nonautonomonus second order periodic systems with a nonslnooth potential. Using the nonsmooth critical theory, we establish the existence of at least two nontrivial solutions. Our framework incorporates large classes of both subquadratic and superquadratic potentials at infinity.展开更多
Abstract: The existence of periodic solutions of a class of non- autonomous differential delay equations with the form x′(t)=-∑k=1^n-1f(t,x(t-kr)) is considered, where r 〉 0 is a given constant and f∈C(R...Abstract: The existence of periodic solutions of a class of non- autonomous differential delay equations with the form x′(t)=-∑k=1^n-1f(t,x(t-kr)) is considered, where r 〉 0 is a given constant and f∈C(R×R,R) is odd in x, r-periodic in t and satisfies some superlinear conditions at origin and at infinity. First, the delay system is changed to an equivalent Hamiltonian system. Then the existence of periodic solutions of the Hamiltonian system is studied. Periodic solutions of the Hamiltonian system can be obtained by critical points of a functional defined on a Hilbert space, i.e. , points satisfying φ′(z)=0. By using a linking theorem in critical point theory, the existence of critical points of the functional is obtained. Therefore, the existence of periodic solutions for the Hamiltonian system and its equivalent differential delay equation is established.展开更多
In this paper, we consider a class of N-Laplacian equations involving critical growth{-?_N u = λ|u|^(N-2) u + f(x, u), x ∈ ?,u ∈ W_0^(1,N)(?), u(x) ≥ 0, x ∈ ?,where ? is a bounded domain with smooth boundary in R...In this paper, we consider a class of N-Laplacian equations involving critical growth{-?_N u = λ|u|^(N-2) u + f(x, u), x ∈ ?,u ∈ W_0^(1,N)(?), u(x) ≥ 0, x ∈ ?,where ? is a bounded domain with smooth boundary in R^N(N > 2), f(x, u) is of critical growth. Based on the Trudinger-Moser inequality and a nonstandard linking theorem introduced by Degiovanni and Lancelotti, we prove the existence of a nontrivial solution for any λ > λ_1, λ = λ_?(? = 2, 3, · · ·), and λ_? is the eigenvalues of the operator(-?_N, W_0^(1,N)(?)),which is defined by the Z_2-cohomological index.展开更多
In this paper, a periodic difference equation with saturable nonlinearity is considered. Using the linking theorem in combination with periodic approximations, we establish sufficient conditions on the nonexistence an...In this paper, a periodic difference equation with saturable nonlinearity is considered. Using the linking theorem in combination with periodic approximations, we establish sufficient conditions on the nonexistence and on the existence of homoclinic solutions. Our results not only solve an open problem proposed by Pankov, but also greatly improve some existing ones even for some special cases.展开更多
基金partially supported by CNPq with(429955/2018-9)partially suported by CNPq(309026/2020-2)FAPDF with(16809.78.45403.25042017)。
文摘It is to establish existence of a weak solution for quasilinear elliptic problems assuming that the nonlinear term is critical.The potential V is bounded from below and above by positive constants.Because we are considering a critical term which interacts with higher eigenvalues for the linear problem,we need to apply a linking theorem.Notice that the lack of compactness,which comes from critical problems and the fact that we are working in the whole space,are some obstacles for us to ensure existence of solutions for quasilinear elliptic problems.The main feature in this article is to restore some compact results which are essential in variational methods.Recall that compactness conditions such as the Palais-Smale condition for the associated energy functional is not available in our setting.This difficulty is overcame by taking into account some fine estimates on the critical level for an auxiliary energy functional.
基金supported by the State Committee for Scientific Research of Poland (KBN) under research grants nr 2 P03A 003 25 and nr 4T07A 027 26
文摘We study nonautonomonus second order periodic systems with a nonslnooth potential. Using the nonsmooth critical theory, we establish the existence of at least two nontrivial solutions. Our framework incorporates large classes of both subquadratic and superquadratic potentials at infinity.
文摘Abstract: The existence of periodic solutions of a class of non- autonomous differential delay equations with the form x′(t)=-∑k=1^n-1f(t,x(t-kr)) is considered, where r 〉 0 is a given constant and f∈C(R×R,R) is odd in x, r-periodic in t and satisfies some superlinear conditions at origin and at infinity. First, the delay system is changed to an equivalent Hamiltonian system. Then the existence of periodic solutions of the Hamiltonian system is studied. Periodic solutions of the Hamiltonian system can be obtained by critical points of a functional defined on a Hilbert space, i.e. , points satisfying φ′(z)=0. By using a linking theorem in critical point theory, the existence of critical points of the functional is obtained. Therefore, the existence of periodic solutions for the Hamiltonian system and its equivalent differential delay equation is established.
基金Supported by Shanghai Natural Science Foundation(15ZR1429500)NNSF of China(11471215)
文摘In this paper, we consider a class of N-Laplacian equations involving critical growth{-?_N u = λ|u|^(N-2) u + f(x, u), x ∈ ?,u ∈ W_0^(1,N)(?), u(x) ≥ 0, x ∈ ?,where ? is a bounded domain with smooth boundary in R^N(N > 2), f(x, u) is of critical growth. Based on the Trudinger-Moser inequality and a nonstandard linking theorem introduced by Degiovanni and Lancelotti, we prove the existence of a nontrivial solution for any λ > λ_1, λ = λ_?(? = 2, 3, · · ·), and λ_? is the eigenvalues of the operator(-?_N, W_0^(1,N)(?)),which is defined by the Z_2-cohomological index.
基金supported partially by the Specialized Fund for the Doctoral Program of Higher Eduction (Grant No.20071078001)Key Project of National Natural Science Foundation of China (Grant No. 11031002)+1 种基金Natural Science and Engineering Research Council of Canada (NSERC)Project of Scientific Research Innovation Academic Group for the Education System of Guangzhou City
文摘In this paper, a periodic difference equation with saturable nonlinearity is considered. Using the linking theorem in combination with periodic approximations, we establish sufficient conditions on the nonexistence and on the existence of homoclinic solutions. Our results not only solve an open problem proposed by Pankov, but also greatly improve some existing ones even for some special cases.