在处理不平衡数据集时,为了降低类重叠对分类效果的影响,避免过采样造成的过拟合现象,以及欠采样造成的信息丢失问题,本文提出一种基于欠采样与属性选择的多决策树方法UAMDT(multi-decision tree based on under-sampling and attribute...在处理不平衡数据集时,为了降低类重叠对分类效果的影响,避免过采样造成的过拟合现象,以及欠采样造成的信息丢失问题,本文提出一种基于欠采样与属性选择的多决策树方法UAMDT(multi-decision tree based on under-sampling and attribute selection)。其首先利用Tomek link欠采样与集成欠采样两种技术相结合对数据进行处理,并获得多个平衡子集;然后在每个平衡子集上构建单决策树,采用结合信息增益和基尼指数的混合属性度量作为属性选择标准,选择最优属性作为每棵单决策树的根节点的分裂属性;最后将单决策树进行集成构建多决策树。通过对10个不平衡数据集的多个评估指标进行实验,验证了本文算法的有效性和可行性。展开更多
文摘在处理不平衡数据集时,为了降低类重叠对分类效果的影响,避免过采样造成的过拟合现象,以及欠采样造成的信息丢失问题,本文提出一种基于欠采样与属性选择的多决策树方法UAMDT(multi-decision tree based on under-sampling and attribute selection)。其首先利用Tomek link欠采样与集成欠采样两种技术相结合对数据进行处理,并获得多个平衡子集;然后在每个平衡子集上构建单决策树,采用结合信息增益和基尼指数的混合属性度量作为属性选择标准,选择最优属性作为每棵单决策树的根节点的分裂属性;最后将单决策树进行集成构建多决策树。通过对10个不平衡数据集的多个评估指标进行实验,验证了本文算法的有效性和可行性。