To optimize the spatial distribution of cotton bolls and to increase the yield,the relationship between yield components and boll spatial distribution was investigated among different Bt(Bacillus thuringensis)cotton v...To optimize the spatial distribution of cotton bolls and to increase the yield,the relationship between yield components and boll spatial distribution was investigated among different Bt(Bacillus thuringensis)cotton varieties.A five-year field experiment was conducted to reveal the reasons for the differences in lint yield and fiber quality across three Bt cotton varieties with different yield formations from 2013 to 2017.The lint yield of Jiman 169(the average yield from 2013-2017 was 42.2 g/plant)was the highest,i.e.,16.3 and 36.9%higher than Lumianyan 21(L21)and Daizimian 99B(99B),respectively.And the differences in boll weight among the three cultivars were similar to the lint yield,while the others yield components were not.So the increase in lint yield was mainly attributed to the enlargement in boll weight.However,the change in fiber quality was inconsistent with the lint yield,and the quality of L21 was significantly better than that of Jimian 169(J169)and 99B,which was caused by the diversity of boll spatial distribution.Compared with 99B,the loose-type J169 had the highest number of large bolls in inner positions;the tight-type L21 had a few large bolls and the highest number of lower and middle bolls.And approximately 80.72%of the lint yield was concentrated on the inner nodes in Jiman 169,compared with 77.44%of L21 and 66.73%of 99B during the five-year experiment.Although lint yield was significantly affected by the interannual changes,the lint yield of J169 was the highest and the most stable,as well as its yield components.These observations demonstrated the increase in lint yield was due to the increase in boll weight,and the large bolls and high fiber quality were attributed to the optimal distribution of bolls within the canopies.展开更多
Cotton yield per unit ground area has stagnated for a dozen years in Hubei Province, China, although a series of new high- yielding varieties have been commercialized. A multi-location investigation was carried out in...Cotton yield per unit ground area has stagnated for a dozen years in Hubei Province, China, although a series of new high- yielding varieties have been commercialized. A multi-location investigation was carried out in 2008 and 2009 in 13 counties to determine if increased planting population density (PPD) would break the stagnant yield. The results showed that significant differences among the fields existed in theoretical yield, PPD, and bolls per square meter (BPM). The lowest yield of 1 641.1 kg ha-I was resulted from the lowest PPD of 1.7 plants m-2 and the lowest BPM of 71.8 bolls m-2, while the highest yield of 2 779.7 kg ha-~ was resulted from the highest PPD of 2.5 plants m-2, and the highest BPM of 129.4 bolls m-z. Plant mapping revealed that boll retention rate (BRR) was maintained over 30 or 40% for the first 17-18 fruiting branches (FBs) and decreased dramatically thereafter, rotten boll rate (RBR) decreased, but open boll rate (OBR) rose first and dropped later with rising FB from the bottom to the top. But BRR, RBR, and OBR were all dropped with the fruiting positions (FPs) extending outwards. The optimum range of plant density would be 2-3 plants m-2 and the proper individual plant structure would be 16-19 FBs with 5-7 FPs for cotton production in Hubei Province.展开更多
基金supported by the National Natural Science Foundation of China (31601253)the Modern Agroindustry Technology Research System, China (SDAIT-03)the Natural Science Foundation of Shandong Province, China (ZR2016CQ20)
文摘To optimize the spatial distribution of cotton bolls and to increase the yield,the relationship between yield components and boll spatial distribution was investigated among different Bt(Bacillus thuringensis)cotton varieties.A five-year field experiment was conducted to reveal the reasons for the differences in lint yield and fiber quality across three Bt cotton varieties with different yield formations from 2013 to 2017.The lint yield of Jiman 169(the average yield from 2013-2017 was 42.2 g/plant)was the highest,i.e.,16.3 and 36.9%higher than Lumianyan 21(L21)and Daizimian 99B(99B),respectively.And the differences in boll weight among the three cultivars were similar to the lint yield,while the others yield components were not.So the increase in lint yield was mainly attributed to the enlargement in boll weight.However,the change in fiber quality was inconsistent with the lint yield,and the quality of L21 was significantly better than that of Jimian 169(J169)and 99B,which was caused by the diversity of boll spatial distribution.Compared with 99B,the loose-type J169 had the highest number of large bolls in inner positions;the tight-type L21 had a few large bolls and the highest number of lower and middle bolls.And approximately 80.72%of the lint yield was concentrated on the inner nodes in Jiman 169,compared with 77.44%of L21 and 66.73%of 99B during the five-year experiment.Although lint yield was significantly affected by the interannual changes,the lint yield of J169 was the highest and the most stable,as well as its yield components.These observations demonstrated the increase in lint yield was due to the increase in boll weight,and the large bolls and high fiber quality were attributed to the optimal distribution of bolls within the canopies.
基金funded by the Professional (Agriculture) Researching Project for Public Benefit of Ministry of Agriculture,China (3-5)High-Yielding Promotion Project of Ministry of Agriculture,Chinathe National Industrial System Program of Modern Agriculture,China
文摘Cotton yield per unit ground area has stagnated for a dozen years in Hubei Province, China, although a series of new high- yielding varieties have been commercialized. A multi-location investigation was carried out in 2008 and 2009 in 13 counties to determine if increased planting population density (PPD) would break the stagnant yield. The results showed that significant differences among the fields existed in theoretical yield, PPD, and bolls per square meter (BPM). The lowest yield of 1 641.1 kg ha-I was resulted from the lowest PPD of 1.7 plants m-2 and the lowest BPM of 71.8 bolls m-2, while the highest yield of 2 779.7 kg ha-~ was resulted from the highest PPD of 2.5 plants m-2, and the highest BPM of 129.4 bolls m-z. Plant mapping revealed that boll retention rate (BRR) was maintained over 30 or 40% for the first 17-18 fruiting branches (FBs) and decreased dramatically thereafter, rotten boll rate (RBR) decreased, but open boll rate (OBR) rose first and dropped later with rising FB from the bottom to the top. But BRR, RBR, and OBR were all dropped with the fruiting positions (FPs) extending outwards. The optimum range of plant density would be 2-3 plants m-2 and the proper individual plant structure would be 16-19 FBs with 5-7 FPs for cotton production in Hubei Province.