Traditional multi-level security(MLS)systems have the defect of centralizing authorized facilities,which is difficult to meet the security requirements of modern distributed peer-to-peer network architecture.Blockchai...Traditional multi-level security(MLS)systems have the defect of centralizing authorized facilities,which is difficult to meet the security requirements of modern distributed peer-to-peer network architecture.Blockchain is widely used in the field of access control with its decentralization,traceability and non-defective modification.Combining the blockchain technology and the Bell-LaPadula model,we propose a new access control model,named BCBLPM,for MLS environment.The“multi-chain”blockchain architecture is used for dividing resources into isolated access domains,providing a fine-grained data protection mechanism.The access control policies are implemented by smart contracts deployed in each access domain,so that the side chains of different access domains storage access records from outside and maintain the integrity of the records.Finally,we implement the BC-BLPM prototype system using the Hyperledger Fabric.The experimental and analytical results show that the model can adapt well to the needs of multi-level security environment,and it has the feasibility of application in actual scenarios.展开更多
At present,there are few security models which control the communication between virtual machines (VMs).Moreover,these models are not applicable to multi-level security (MLS).In order to implement mandatory access con...At present,there are few security models which control the communication between virtual machines (VMs).Moreover,these models are not applicable to multi-level security (MLS).In order to implement mandatory access control (MAC) and MLS in virtual machine system,this paper designs Virt-BLP model,which is based on BLP model.For the distinction between virtual machine system and non-virtualized system,we build elements and security axioms of Virt-BLP model by modifying those of BLP.Moreover,comparing with BLP,the number of state transition rules of Virt-BLP is reduced accordingly and some rules can only be enforced by trusted subject.As a result,Virt-BLP model supports MAC and partial discretionary access control (DAC),well satisfying the requirement of MLS in virtual machine system.As space is limited,the implementation of our MAC framework will be shown in a continuation.展开更多
An access control model is proposed based on the famous Bell-LaPadula (BLP) model.In the proposed model,hierarchical relationships among departments are built,a new concept named post is proposed,and assigning secur...An access control model is proposed based on the famous Bell-LaPadula (BLP) model.In the proposed model,hierarchical relationships among departments are built,a new concept named post is proposed,and assigning security tags to subjects and objects is greatly simplified.The interoperation among different departments is implemented through assigning multiple security tags to one post, and the more departments are closed on the organization tree,the more secret objects can be exchanged by the staff of the departments.The access control matrices of the department,post and staff are defined.By using the three access control matrices,a multi granularity and flexible discretionary access control policy is implemented.The outstanding merit of the BLP model is inherited,and the new model can guarantee that all the information flow is under control.Finally,our study shows that compared to the BLP model,the proposed model is more flexible.展开更多
文摘Traditional multi-level security(MLS)systems have the defect of centralizing authorized facilities,which is difficult to meet the security requirements of modern distributed peer-to-peer network architecture.Blockchain is widely used in the field of access control with its decentralization,traceability and non-defective modification.Combining the blockchain technology and the Bell-LaPadula model,we propose a new access control model,named BCBLPM,for MLS environment.The“multi-chain”blockchain architecture is used for dividing resources into isolated access domains,providing a fine-grained data protection mechanism.The access control policies are implemented by smart contracts deployed in each access domain,so that the side chains of different access domains storage access records from outside and maintain the integrity of the records.Finally,we implement the BC-BLPM prototype system using the Hyperledger Fabric.The experimental and analytical results show that the model can adapt well to the needs of multi-level security environment,and it has the feasibility of application in actual scenarios.
基金Acknowledgements This work was supported by National Key Basic Research and Development Plan (973 Plan) of China (No. 2007CB310900) and National Natural Science Foundation of China (No. 90612018, 90715030 and 60970008).
文摘At present,there are few security models which control the communication between virtual machines (VMs).Moreover,these models are not applicable to multi-level security (MLS).In order to implement mandatory access control (MAC) and MLS in virtual machine system,this paper designs Virt-BLP model,which is based on BLP model.For the distinction between virtual machine system and non-virtualized system,we build elements and security axioms of Virt-BLP model by modifying those of BLP.Moreover,comparing with BLP,the number of state transition rules of Virt-BLP is reduced accordingly and some rules can only be enforced by trusted subject.As a result,Virt-BLP model supports MAC and partial discretionary access control (DAC),well satisfying the requirement of MLS in virtual machine system.As space is limited,the implementation of our MAC framework will be shown in a continuation.
基金The National Natural Science Foundation of China(No.60403027,60773191,70771043)the National High Technology Research and Development Program of China(863 Program)(No.2007AA01Z403)
文摘An access control model is proposed based on the famous Bell-LaPadula (BLP) model.In the proposed model,hierarchical relationships among departments are built,a new concept named post is proposed,and assigning security tags to subjects and objects is greatly simplified.The interoperation among different departments is implemented through assigning multiple security tags to one post, and the more departments are closed on the organization tree,the more secret objects can be exchanged by the staff of the departments.The access control matrices of the department,post and staff are defined.By using the three access control matrices,a multi granularity and flexible discretionary access control policy is implemented.The outstanding merit of the BLP model is inherited,and the new model can guarantee that all the information flow is under control.Finally,our study shows that compared to the BLP model,the proposed model is more flexible.
基金supported by National 863 High-tech Research Development Program of China(2002AA141080),National Natural Science Foundation of China(60373054)and Graduate Innovation Grand of the Chinese Academy of Sciences