期刊文献+
共找到116篇文章
< 1 2 6 >
每页显示 20 50 100
Sustainable Investment Forecasting of Power Grids Based on theDeep Restricted Boltzmann Machine Optimized by the Lion Algorithm 被引量:3
1
作者 Qian Wang Xiaolong Yang +1 位作者 Di Pu Yingying Fan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第1期269-286,共18页
This paper proposes a new power grid investment prediction model based on the deep restricted Boltzmann machine(DRBM)optimized by the Lion algorithm(LA).Firstly,two factors including transmission and distribution pric... This paper proposes a new power grid investment prediction model based on the deep restricted Boltzmann machine(DRBM)optimized by the Lion algorithm(LA).Firstly,two factors including transmission and distribution price reform(TDPR)and 5G station construction were comprehensively incorporated into the consideration of influencing factors,and the fuzzy threshold method was used to screen out critical influencing factors.Then,the LA was used to optimize the parameters of the DRBM model to improve the model’s prediction accuracy,and the model was trained with the selected influencing factors and investment.Finally,the LA-DRBM model was used to predict the investment of a power grid enterprise,and the final prediction result was obtained by modifying the initial result with the modifying factors.The LA-DRBMmodel compensates for the deficiency of the singlemodel,and greatly improves the investment prediction accuracy of the power grid.In this study,a power grid enterprise was taken as an example to carry out an empirical analysis to prove the validity of the model,and a comparison with the RBM,support vector machine(SVM),back propagation neural network(BPNN),and regression model was conducted to verify the superiority of the model.The conclusion indicates that the proposed model has a strong generalization ability and good robustness,is able to abstract the combination of low-level features into high-level features,and can improve the efficiency of the model’s calculations for investment prediction of power grid enterprises. 展开更多
关键词 lion algorithm deep restricted boltzmann machine fuzzy threshold method power grid investment forecasting
下载PDF
Ant Lion Algorithm for Optimized Controller Gains for Power Quality Enrichment of Off-grid Wind Power Harnessing Units 被引量:1
2
作者 Kodakkal Amritha Veramalla Rajagopal +1 位作者 Kuthuri Narasimha Raju Sabha Raj Arya 《Chinese Journal of Electrical Engineering》 CSCD 2020年第3期85-97,共13页
The proposed system uses an algorithm that works on the admittance of the system,for estimating the reference values of generated currents for an off-grid wind power harnessing unit(WPHU).The controller controls the v... The proposed system uses an algorithm that works on the admittance of the system,for estimating the reference values of generated currents for an off-grid wind power harnessing unit(WPHU).The controller controls the voltage and maintains the frequency within the limits while working with both linear and nonlinear loads for varying wind speeds.The admittance algorithm is simple and easy to implement and works very efficiently to generate the triggering signals for the controller of the WPHU.The wind power harnessing unit comprising of a squirrel cage induction generator,a star-delta transformer,a battery storage system and the control unit are modeled using Matlab/Simulink R2019.An isolated transformer with a star-delta configuration connects the load and the generator circuit with the controller to reduce the dc bus voltage and mitigate current in the neutral line.The response of the system during the dynamic loading depends on the best possible compensator proportional-integral(PI)gains.The antlion optimization algorithm is compared with particle swarm optimization and grey wolf optimization and is found to have the advantages of good convergence,high efficiency and fast calculating speed.It is therefore used to extract the optimal values of frequency and voltage PI gains.The simulation results of the control algorithm for the WPHU are validated in a real-time environment in a dSpace1104 laboratory set up.This algorithm is proven to have a quick response,maintain the required frequency,suppress the current harmonics,regulate voltage,help in balancing the load and compensating for the neutral current. 展开更多
关键词 Wind power harnessing unit induction generator admittance based control algorithm ant lion optimization algorithm voltage and frequency control battery energy storage system
原文传递
Parallel discrete lion swarm optimization algorithm for solving traveling salesman problem 被引量:2
3
作者 ZHANG Daoqing JIANG Mingyan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第4期751-760,共10页
As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optim... As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optimization(DLSO) algorithm is proposed to solve the TSP. Firstly, we introduce discrete coding and order crossover operators in DLSO. Secondly, we use the complete 2-opt(C2-opt) algorithm to enhance the local search ability.Then in order to enhance the efficiency of the algorithm, a parallel discrete lion swarm optimization(PDLSO) algorithm is proposed.The PDLSO has multiple populations, and each sub-population independently runs the DLSO algorithm in parallel. We use the ring topology to transfer information between sub-populations. Experiments on some benchmarks TSP problems show that the DLSO algorithm has a better accuracy than other algorithms, and the PDLSO algorithm can effectively shorten the running time. 展开更多
关键词 discrete lion swarm optimization(DLSO)algorithm complete 2-opt(C2-opt)algorithm parallel discrete lion swarm optimization(PDLSO)algorithm traveling salesman problem(TSP)
下载PDF
LOA-RPL:Novel Energy-Efficient Routing Protocol for the Internet of Things Using Lion Optimization Algorithm to Maximize Network Lifetime
4
作者 Sankar Sennan Somula Ramasubbareddy +2 位作者 Anand Nayyar Yunyoung Nam Mohamed Abouhawwash 《Computers, Materials & Continua》 SCIE EI 2021年第10期351-371,共21页
Energy conservation is a significant task in the Internet of Things(IoT)because IoT involves highly resource-constrained devices.Clustering is an effective technique for saving energy by reducing duplicate data.In a c... Energy conservation is a significant task in the Internet of Things(IoT)because IoT involves highly resource-constrained devices.Clustering is an effective technique for saving energy by reducing duplicate data.In a clustering protocol,the selection of a cluster head(CH)plays a key role in prolonging the lifetime of a network.However,most cluster-based protocols,including routing protocols for low-power and lossy networks(RPLs),have used fuzzy logic and probabilistic approaches to select the CH node.Consequently,early battery depletion is produced near the sink.To overcome this issue,a lion optimization algorithm(LOA)for selecting CH in RPL is proposed in this study.LOA-RPL comprises three processes:cluster formation,CH selection,and route establishment.A cluster is formed using the Euclidean distance.CH selection is performed using LOA.Route establishment is implemented using residual energy information.An extensive simulation is conducted in the network simulator ns-3 on various parameters,such as network lifetime,power consumption,packet delivery ratio(PDR),and throughput.The performance of LOA-RPL is also compared with those of RPL,fuzzy rule-based energyefficient clustering and immune-inspired routing(FEEC-IIR),and the routing scheme for IoT that uses shuffled frog-leaping optimization algorithm(RISARPL).The performance evaluation metrics used in this study are network lifetime,power consumption,PDR,and throughput.The proposed LOARPL increases network lifetime by 20%and PDR by 5%–10%compared with RPL,FEEC-IIR,and RISA-RPL.LOA-RPL is also highly energy-efficient compared with other similar routing protocols. 展开更多
关键词 Internet of things cluster head clustering protocol optimization algorithm lion optimization algorithm network lifetime routing protocol wireless sensor networks energy consumption low-power and lossy networks
下载PDF
基于改进蚁狮算法的家庭用电优化调度 被引量:1
5
作者 程江洲 许辰宇 鲍刚 《计算机仿真》 2024年第1期111-115,159,共6页
为了充分挖掘用户侧需求响应能力,平抑用户的负荷波动及降低用户的用电成本,提出了一种基于改进蚁狮优化算法的家庭用电优化调度方法。首先构建了家庭用电优化调度模型,并将峰均比和平均等待时间作为惩罚量引入用电成本得到综合成本函... 为了充分挖掘用户侧需求响应能力,平抑用户的负荷波动及降低用户的用电成本,提出了一种基于改进蚁狮优化算法的家庭用电优化调度方法。首先构建了家庭用电优化调度模型,并将峰均比和平均等待时间作为惩罚量引入用电成本得到综合成本函数。其次采用差分进化机制改进了传统的蚁狮算法。最后基于实时电价和临界峰值电价进行仿真,结果表明,改进的蚁狮算法可以有效的降低用户的用电成本,维持用电舒适度,并与粒子群算法、遗传算法和蚁狮算法进行对比,验证了所提算法有较高的稳定性,更强的全局搜索能力,收敛效果更好。 展开更多
关键词 需求响应 惩罚量 综合成本 差分进化 蚁狮算法
下载PDF
考虑能耗和运输的有限缓冲区混合流水车间调度 被引量:1
6
作者 温廷新 关婷誉 《系统仿真学报》 CAS CSCD 北大核心 2024年第6期1344-1358,共15页
为解决生产调度不及时、加工过程中能耗过大等问题,构建了有限缓冲区混合流水车间调度优化模型。模型以最小化最大完工时间和车间总能耗为目标,将运输时间、广义能耗和缓冲区容量等资源限制作为约束,并应用开关机节能策略减少待机能耗,... 为解决生产调度不及时、加工过程中能耗过大等问题,构建了有限缓冲区混合流水车间调度优化模型。模型以最小化最大完工时间和车间总能耗为目标,将运输时间、广义能耗和缓冲区容量等资源限制作为约束,并应用开关机节能策略减少待机能耗,验证了优化模型的可行性;设计一种狮群算法,采用随机产生与贪婪选择相结合的种群初始化方法,提高初始解质量和求解效率,验证了狮群算法的优越性。实验结果表明:该算法能有效解决考虑能耗和运输时间的有限缓冲区混合流水车间调度问题,优化模型能依照实际需要进行柔性调节,达到制造型企业合理排产、节能减排的目的。 展开更多
关键词 混合流水车间 综合能耗 缓冲区 狮群算法 多目标优化
下载PDF
Two-Stage Planning of Distributed Power Supply and Energy Storage Capacity Considering Hierarchical Partition Control of Distribution Network with Source-Load-Storage
7
作者 Junhui Li Yuqing Zhang +4 位作者 Can Chen Xiaoxiao Wang Yinchi Shao Xingxu Zhu Cuiping Li 《Energy Engineering》 EI 2024年第9期2389-2408,共20页
Aiming at the consumption problems caused by the high proportion of renewable energy being connected to the distribution network,it also aims to improve the power supply reliability of the power system and reduce the ... Aiming at the consumption problems caused by the high proportion of renewable energy being connected to the distribution network,it also aims to improve the power supply reliability of the power system and reduce the operating costs of the power system.This paper proposes a two-stage planning method for distributed generation and energy storage systems that considers the hierarchical partitioning of source-storage-load.Firstly,an electrical distance structural index that comprehensively considers active power output and reactive power output is proposed to divide the distributed generation voltage regulation domain and determine the access location and number of distributed power sources.Secondly,a two-stage planning is carried out based on the zoning results.In the phase 1 distribution network-zoning optimization layer,the network loss is minimized so that the node voltage in the area does not exceed the limit,and the distributed generation configuration results are initially determined;in phase 2,the partition-node optimization layer is planned with the goal of economic optimization,and the distance-based improved ant lion algorithm is used to solve the problem to obtain the optimal distributed generation and energy storage systemconfiguration.Finally,the IEEE33 node systemwas used for simulation.The results showed that the voltage quality was significantly improved after optimization,and the overall revenue increased by about 20.6%,verifying the effectiveness of the two-stage planning. 展开更多
关键词 Zoning control two-stage planning site selection and capacity determination optimized scheduling improved ant lion algorithm
下载PDF
基于sigmoid-sinh分段函数的变步长FxLMS算法 被引量:2
8
作者 李飞 黄双 +2 位作者 郭辉 徐洋 傅伟 《东华大学学报(自然科学版)》 CAS 北大核心 2024年第1期93-100,共8页
为改善滤波-x最小均方(filtered-x least mean square,FxLMS)算法在噪声主动控制时无法兼顾收敛速度和稳态误差的问题,提出了基于sigmoid-sinh分段函数的FxLMS(SSFxLMS)算法,并引入蚁狮算法对SFxLMS(sigmoid filtered-x least mean squa... 为改善滤波-x最小均方(filtered-x least mean square,FxLMS)算法在噪声主动控制时无法兼顾收敛速度和稳态误差的问题,提出了基于sigmoid-sinh分段函数的FxLMS(SSFxLMS)算法,并引入蚁狮算法对SFxLMS(sigmoid filtered-x least mean square)、ShFxLMS(sinh filtered-x least mean square)、SSFxLMS算法的参数进行优化。分别采用高斯白噪声和实测簇绒地毯织机噪声为输入信号,采用FxLMS、SFxLMS、ShFxLMS、SSFxLMS算法进行噪声主动控制仿真,对比分析这4种算法的性能。结果表明:与其他3种算法相比,采用SSFxLMS算法对高斯白噪声和簇绒地毯织机噪声进行控制时,误差信号的平均绝对值更小,平均降噪量与收敛速度也有大幅度提升。由此可知,SSFxLMS算法有效改善了FxLMS算法无法兼顾收敛速度和稳态误差的问题,研究结果为噪声主动控制算法设计提供了一定的参考。 展开更多
关键词 噪声主动控制 变步长 滤波-x最小均方算法 蚁狮算法
下载PDF
基于改进卷积神经网络的中药饮片图像识别 被引量:2
9
作者 李玥辰 赵晓 +1 位作者 王若男 杨晨 《科学技术与工程》 北大核心 2024年第9期3596-3604,共9页
为解决AlexNet网络模型在中药饮片图像识别中存在的识别准确率和鲁棒性不够理想的问题,以常见的50种中药饮片为研究对象,对AlexNet网络模型进行改进优化。首先通过拍摄以及搜索引擎获取中药饮片图像,并对图像进行数据扩充以及细节增强... 为解决AlexNet网络模型在中药饮片图像识别中存在的识别准确率和鲁棒性不够理想的问题,以常见的50种中药饮片为研究对象,对AlexNet网络模型进行改进优化。首先通过拍摄以及搜索引擎获取中药饮片图像,并对图像进行数据扩充以及细节增强预处理。其次对AlexNet网络模型进行优化改进,通过缩减原网络的卷积核个数和卷积核大小、使用全局平均池化(global average pooling,GAP)替代全连接层以减少网络参数;去除局部响应归一化(local response normalization,LRN)层、引入批量归一化(batch normalization,BN)层和使用Lion优化算法替代随机梯度下降(stochastic gradient descent,SGD)优化算法以提高网络训练速度;使用Mish激活函数替代ReLU激活函数和引入通道注意力机制SENet网络以提高模型的识别精度。实验结果表明,改进后的网络模型相比于AlexNet网络模型,平均识别率提高了6.1%,平均损失率下降了14.4%,网络参数由原来的60 M缩减至1 M,该结果表明在中药饮片数据集上,改进后的网络模型具有更高的识别率和更好的鲁棒性,可为中药饮片图像识别领域的进一步发展提供有力支持。 展开更多
关键词 AlexNet网络 中药饮片 全局平均池化 lion优化算法 Mish激活函数 SENet网络
下载PDF
基于XALO-SVM的同步电机转子绕组匝间短路故障诊断方法 被引量:2
10
作者 付强 《黑龙江科技大学学报》 CAS 2024年第1期125-131,共7页
为提高动态绕组匝间短路故障的检测能力,提出了一种新的同步电机转子绕组匝间短路早期故障检测方法,通过分析同步电机转子数据,结合灰色关联度和主成分分析方法,构建了蚁狮算法与支持向量机的模型,提取关键故障数据作为支持向量机模型... 为提高动态绕组匝间短路故障的检测能力,提出了一种新的同步电机转子绕组匝间短路早期故障检测方法,通过分析同步电机转子数据,结合灰色关联度和主成分分析方法,构建了蚁狮算法与支持向量机的模型,提取关键故障数据作为支持向量机模型的输入变量,使用改进的蚁狮算法来优化支持向量机算法的关键参数,通过故障数据验证故障诊断模型。结果表明,基于XALO-SVM的故障诊断模型诊断精度可达97%以上,同时也缩短了诊断时间。 展开更多
关键词 同步电机 蚁狮算法 支持向量机 故障诊断
下载PDF
基于视觉感知域的钢轨铣磨车人机界面布局优化方法
11
作者 刘伟军 刘新昊 +5 位作者 孙猛 魏喆 赵日铮 于沈弘 杨国哲 姜兴宇 《计算机集成制造系统》 EI CSCD 北大核心 2024年第5期1694-1709,共16页
如何快速获取铣削作业参数信息与铣磨车车机作业状态是保证钢轨铣磨车钢轨修复作业效率、质量与安全的关键。基于此,提出一种基于灰狼-蚁狮算法的钢轨铣磨车人机交互界面优化方法。综合考虑钢轨修复过程中多维度信息、多流程、多功能、... 如何快速获取铣削作业参数信息与铣磨车车机作业状态是保证钢轨铣磨车钢轨修复作业效率、质量与安全的关键。基于此,提出一种基于灰狼-蚁狮算法的钢轨铣磨车人机交互界面优化方法。综合考虑钢轨修复过程中多维度信息、多流程、多功能、多对象等要求,建立以视觉感知强度为目标的钢轨铣磨车人机交互界面优化模型;提出一种基于灰狼-蚁狮的模型求解算法,解决多决策变量界面布局模型求解时陷入局部最优与极值点逼近问题,获得钢轨铣磨车人机交互界面优化方案。最后,对优化前后的钢轨铣磨车人机交互界面进行眼动实验,实验结果表明,优化后的人机界面布局在舒适性、安全性以及界面的合理性上都优于原装备的设计,验证了该模型与算法的有效性和可行性。 展开更多
关键词 钢轨铣磨车 视觉感知强度 人机界面优化 灰狼-蚁狮算法
下载PDF
风电机组齿轮箱故障预警算法研究及应用 被引量:1
12
作者 刘河生 徐浩 +4 位作者 李宁 李林晏 景玮钰 雷航 张瑞刚 《热力发电》 CAS CSCD 北大核心 2024年第4期36-42,共7页
齿轮箱健康状态直接影响风电机组的发电量,为了在工程实际中尽早实现齿轮箱故障状态的预警,提出一种基于改进狮群优化的K-means聚类算法。将监督机制及考虑非线性权重的正余弦优化算法引入狮群算法实现算法改进,通过改进狮群优化算法对... 齿轮箱健康状态直接影响风电机组的发电量,为了在工程实际中尽早实现齿轮箱故障状态的预警,提出一种基于改进狮群优化的K-means聚类算法。将监督机制及考虑非线性权重的正余弦优化算法引入狮群算法实现算法改进,通过改进狮群优化算法对狮王位置的迭代,选择最优解作为K-means算法聚类中心,以解决传统聚类算法对初始聚类中心依赖性强的问题。选择UCI数据对算法进行对比验证,结果表明,基于改进狮群优化的K-means聚类算法的分类准确度和稳定性有较好的提升。将该算法应用于某风电场内4台同一型号机组齿轮箱振动加速度有效值的对比测试,发现该算法的分类中心分布与齿轮箱实际运行状态相吻合,且与标准规定的齿轮箱不同状态所对应的振动能量分布相一致,证明该算法可实现风电机组齿轮箱早期故障预警。 展开更多
关键词 风电机组 齿轮箱 改进狮群优化 聚类算法 故障预警
下载PDF
基于蚁狮优化高斯过程回归的锂电池剩余使用寿命预测
13
作者 冯娜娜 杨明 +2 位作者 惠周利 王瑞洁 宁弘扬 《储能科学与技术》 CAS CSCD 北大核心 2024年第5期1643-1652,共10页
迅速获取精确的锂电池的剩余使用寿命和健康状态,对于维持锂电池的可靠性至关重要。针对锂电池剩余使用寿命(remaining useful life,RUL)预测精度较低,传统的高斯过程回归(Gaussian process regression,GPR)模型的超参数寻优结果不理想... 迅速获取精确的锂电池的剩余使用寿命和健康状态,对于维持锂电池的可靠性至关重要。针对锂电池剩余使用寿命(remaining useful life,RUL)预测精度较低,传统的高斯过程回归(Gaussian process regression,GPR)模型的超参数寻优结果不理想、预测效果差等问题,使用蚁狮优化算法(ant-lion optimization algorithm,ALO)对高斯过程回归的超参数进行寻优,实现锂电池剩余使用寿命的精确预测。首先,根据电池充电过程中电池电压的循环曲线,提取了6个参数作为电池的健康因子,然后采用Pearson相关系数验证健康因子与电池容量的相关关系,最终选出平均放电电压、恒流充电阶段电池存储的充电量、整个充电阶段电池存储的充电量以及时间积分中的放电温度这4个参数作为健康因子。最后,利用支持向量回归(support vector regression,SVR)、GPR和ALO-GPR对锂电池RUL进行预测,对各项指标进行比较分析。并将本工作所提出的模型与其他文献所提出的模型进行了比较。通过NASA锂电池数据集验证了模型的有效性,实验结果表明,所提出ALO-GPR的RUL预测模型误差小,均方根误差控制在1%以内,平均绝对误差控制在0.65%以内,泛化性强,具有良好的应用前景。 展开更多
关键词 锂电池 高斯过程回归 蚁狮优化算法 剩余使用寿命
下载PDF
一种多策略改进鲸鱼优化算法的混沌系统参数辨识
14
作者 潘悦悦 吴立飞 杨晓忠 《智能系统学报》 CSCD 北大核心 2024年第1期176-189,共14页
针对混沌系统参数辨识精度不高的问题,以鲸鱼优化算法(whale optimization algorithm,WOA)为基础,提出一种多策略改进鲸鱼优化算法(multi-strategy improved whale optimization algorithm,MIWOA)。采用Chebyshev混沌映射选取高质量初... 针对混沌系统参数辨识精度不高的问题,以鲸鱼优化算法(whale optimization algorithm,WOA)为基础,提出一种多策略改进鲸鱼优化算法(multi-strategy improved whale optimization algorithm,MIWOA)。采用Chebyshev混沌映射选取高质量初始种群,采用非线性收敛因子和自适应权重,提高算法收敛速度,为了避免算法陷入局部最优,动态选择自适应t分布或蚁狮优化算法更新后期位置,提高处理局部极值的能力。通过对10个基准函数和高维测试函数进行仿真试验,表明MIWOA具有良好的稳定性和收敛精度。将MIWOA应用于辨识Rossler和Lu混沌系统参数,仿真结果优于现有成果,表明本文MIWOA辨识混沌系统参数的高效性和实用性。 展开更多
关键词 多策略改进鲸鱼优化算法 混沌系统 参数辨识 Chebyshev混沌映射 自适应t分布 蚁狮优化算法 基准函数 Wilcoxon秩和检验
下载PDF
种群熵启动反向学习的动态多种群粒子群算法 被引量:1
15
作者 梁晓磊 张孟镝 +1 位作者 周文峰 武建国 《智能计算机与应用》 2024年第2期9-17,共9页
针对传统粒子群优化算法在求解复杂优化问题时容易陷入局部最优和停滞的问题,提出采用种群熵启动反向学习的动态多种群粒子群算法。借鉴狮群算法划分狮群的思想,采用动态多种群划分策略,将粒子划分成3个不同行为子群,对其实施不同的位... 针对传统粒子群优化算法在求解复杂优化问题时容易陷入局部最优和停滞的问题,提出采用种群熵启动反向学习的动态多种群粒子群算法。借鉴狮群算法划分狮群的思想,采用动态多种群划分策略,将粒子划分成3个不同行为子群,对其实施不同的位置更新公式,保持粒子在搜索过程中的多样性;在迭代阶段,为避免算法早熟,构建了各维重心反向变异策略丰富变异备选个体,并结合种群熵指标进行种群状态评价适时启动变异策略,帮助粒子跳出局部最优。最后,通过8个基准测试函数与同种类6种经典和新型改进算法,在不同维度下进行测试对比。数值实验结果表明,改进策略显著提升了粒子群算法搜索能力,在搜索精度和搜索速度方面均优于其他对比算法。 展开更多
关键词 粒子群算法 狮群算法 种群熵 反向学习 动态多种群划分
下载PDF
蚁狮优化算法研究综述
16
作者 胡城 蔡延光 +1 位作者 黄嘉铖 曾庆丰 《自动化与信息工程》 2024年第3期1-10,15,共11页
蚁狮优化(ALO)算法是通过模拟自然界中蚁狮捕食蚂蚁的狩猎机制而提出的一种新型元启发式算法,广泛应用于各种优化问题,具有全局寻优能力强、收敛精度高、简单易实现等特点。首先,简述ALO算法的原理及流程;然后,阐述ALO算法的多种变体;接... 蚁狮优化(ALO)算法是通过模拟自然界中蚁狮捕食蚂蚁的狩猎机制而提出的一种新型元启发式算法,广泛应用于各种优化问题,具有全局寻优能力强、收敛精度高、简单易实现等特点。首先,简述ALO算法的原理及流程;然后,阐述ALO算法的多种变体;接着,介绍ALO算法在工程设计、人工智能、计算机科学、电力系统优化、控制系统等领域的应用;最后,对ALO算法进行总结,并提出建议和未来可能的研究方向。 展开更多
关键词 蚁狮优化算法 元启发式算法 综述
下载PDF
面向用户侧不同用电群体的低碳运行用电策略
17
作者 甘海庆 任禹丞 +1 位作者 杨子跃 马灵涓 《现代电力》 北大核心 2024年第5期963-970,共8页
“双碳”目标的持续推进对用户侧能源消费提出了新的要求,传统用电方式将逐渐向低碳化、清洁化发展。为了应对用户的低碳用电需求,提出一种面向用户侧不同用电群体的低碳运行用电策略。首先,分析用户用电行为特征,结合有损网络的碳排放... “双碳”目标的持续推进对用户侧能源消费提出了新的要求,传统用电方式将逐渐向低碳化、清洁化发展。为了应对用户的低碳用电需求,提出一种面向用户侧不同用电群体的低碳运行用电策略。首先,分析用户用电行为特征,结合有损网络的碳排放流理论,构建低碳运行用电策略模型,并制定经济性评价指标。其次,依据节点碳势变化特性,采用蚁狮优化算法对模型进行求解,准确获取不同用户的低碳用电策略。最后,采用IEEE14节点系统对所提模型及方法进行仿真分析,进一步验证所提低碳运行用电策略的有效性。 展开更多
关键词 用户侧 低碳运行 用户群划分 新能源消纳 碳排放流理论 蚁狮算法
下载PDF
基于多目标蚁狮优化算法的月球InSAR卫星编队构型设计
18
作者 舒睿 贾庆贤 +1 位作者 于丹 杜耀珂 《系统工程与电子技术》 EI CSCD 北大核心 2024年第9期3128-3138,共11页
本文研究了月球干涉合成孔径雷达(interferometric synthetic aperture radar,InSAR)卫星编队构型设计问题。首先,建立了基于相对偏心率/相对倾角(eccentricity/inclination,E/I)矢量的月球InSAR卫星相对动力学模型。然后,研究了月球轨... 本文研究了月球干涉合成孔径雷达(interferometric synthetic aperture radar,InSAR)卫星编队构型设计问题。首先,建立了基于相对偏心率/相对倾角(eccentricity/inclination,E/I)矢量的月球InSAR卫星相对动力学模型。然后,研究了月球轨道摄动环境下的编队飞行长期稳定飞行条件。进一步,以相对测高精度和模糊高度为优化指标,同时考虑星间安全性,给出了月球InSAR卫星编队构型优化的目标函数。针对现有的研究方法难以解决构型设计的多目标问题,应用改进多目标蚁狮优化算法实现了月球InSAR卫星编队构型设计。仿真结果表明,其在基线使用率方面更优,从而验证了所提算法的适应性和有效性。 展开更多
关键词 月球InSAR卫星编队 构型设计 蚁狮优化算法
下载PDF
基于蚁狮算法的主动配电网多目标重构优化
19
作者 孙华利 叶华 +1 位作者 董诗焘 张孝 《微型电脑应用》 2024年第10期161-163,168,共4页
提出一种有效的智能蚁狮优化(ALO)算法,用于求解配电网的多目标重构优化问题。问题的主要目标是求解主动配电网系统中最优的网络重构,并确定系统中分布式能源(DG)的大小和位置,从而使网络的损耗最小以及电压的稳定性增强。结合IEEE33总... 提出一种有效的智能蚁狮优化(ALO)算法,用于求解配电网的多目标重构优化问题。问题的主要目标是求解主动配电网系统中最优的网络重构,并确定系统中分布式能源(DG)的大小和位置,从而使网络的损耗最小以及电压的稳定性增强。结合IEEE33总线系统为实际算例进行验证,仿真结果表明,算法能够得到电压分布、功率损耗以及DG的最优位置和规模。这证明ALO算法在主动配电网多目标重构优化领域的有效性,为实际DG的规划配置提供借鉴意义。 展开更多
关键词 主动配电网 网络重构 功率损耗 电压稳定性 蚁狮优化算法
下载PDF
考虑特征关联性的ALO-CNN-LSTM短期负荷预测
20
作者 杨超 王兴 《微型电脑应用》 2024年第1期27-31,共5页
针对短期负荷预测模型未充分考虑负荷的时序性和非线性以及历史负荷的高冗余性,提出一种考虑特征关联性的ALO-CNN-LSTM短期负荷预测模型。采用卷积神经网络(CNN)获取负荷时间序列高维空间特征。采用Copula函数对天气、湿度等气象因素序... 针对短期负荷预测模型未充分考虑负荷的时序性和非线性以及历史负荷的高冗余性,提出一种考虑特征关联性的ALO-CNN-LSTM短期负荷预测模型。采用卷积神经网络(CNN)获取负荷时间序列高维空间特征。采用Copula函数对天气、湿度等气象因素序列与高维空间特征进行关联性分析,选出相关性较高的特征参量,采用长短期记忆网络(LSTM)获取高维时域特征,同时结合蚁狮优化(ALO)算法训练模型并确定最佳参数,提高模型的收敛速度和预测精度。以电工数学建模竞赛负荷为例进行仿真分析,并对比不同的优化算法和预测模型。仿真结果表明:模型具有较快的收敛速度和较高预测精度,验证模型的有效性以及实用性。 展开更多
关键词 卷积神经网络 长短期记忆网络 短期负荷预测 相关性分析 蚁狮优化算法
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部