期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Liouvillian Solutions of Algebraic Ordinary Differential Equations of Order One of Genus Zero
1
作者 NGUYEN Tri Dat NGO Lam Xuan Chau 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2023年第2期884-893,共10页
This paper considers the class of autonomous algebraic ordinary differential equations(AODEs)of order one,and studies their Liouvillian general solutions.In particular,let F(y,w)=0 be a rational algebraic curve over C... This paper considers the class of autonomous algebraic ordinary differential equations(AODEs)of order one,and studies their Liouvillian general solutions.In particular,let F(y,w)=0 be a rational algebraic curve over C.The authors give necessary and sufficient conditions for the autonomous first-order AODE F(y,y′)=0 to have a Liouvillian solution over C.Moreover,the authors show that a Liouvillian solutionαof this equation is either an algebraic function over C(x)or an algebraic function over C(exp(ax)).As a byproduct,these results lead to an algorithm for determining a Liouvillian general solution of an autonomous AODE of order one of genus zero.Rational parametrizations of rational algebraic curves play an important role on this method. 展开更多
关键词 Algebraic ordinary differential equation autonomous differential equation liouvillian solution rational algebraic curve rational parametrizations
原文传递
电磁感应透明条件下里德伯原子系统的亚稳动力学
2
作者 夏刚 张亚鹏 +4 位作者 汤婧雯 李春燕 吴春旺 张杰 周艳丽 《物理学报》 SCIE EI CAS CSCD 北大核心 2024年第10期175-183,共9页
开放量子系统是新兴量子科技不可或缺的量子平台,也是量子物理中非常重要的研究领域,其中丰富的动力学现象引起了人们广泛的关注.例如,某些情况下系统在弛豫至稳态之前一般会经历漫长的动力学过程,即亚稳动力学过程.完整描述这种复杂而... 开放量子系统是新兴量子科技不可或缺的量子平台,也是量子物理中非常重要的研究领域,其中丰富的动力学现象引起了人们广泛的关注.例如,某些情况下系统在弛豫至稳态之前一般会经历漫长的动力学过程,即亚稳动力学过程.完整描述这种复杂而又缓慢的动力学过程往往非常困难.针对该问题,本文研究了如何在刘维尔的慢变本征模式子空间中对亚稳动力学过程进行低维度的近似描述,从而简化计算难度.然后,针对电磁感应透明条件下的里德伯原子系统,研究了其亚稳动力学过程的有效描述,并讨论了该有效描述和真实动力学之间的误差.本文的研究为建立开放多体系统动力学过程的有效简化描述提供了一种可行的思路和方法. 展开更多
关键词 亚稳动力学 弛豫 电磁感应透明 刘维尔超算子
下载PDF
Liouvillian and Analytic Integrability of the Quadratic Vector Fields Having an Invariant Ellipse 被引量:2
3
作者 Jaume LLIBRE Claudia VALLS 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2014年第3期453-466,共14页
We characterize the Liouvillian and analytic integrability of the quadratic polynomial vector fields in R2 having an invariant ellipse.More precisely,a quadratic system having an invariant ellipse can be written into ... We characterize the Liouvillian and analytic integrability of the quadratic polynomial vector fields in R2 having an invariant ellipse.More precisely,a quadratic system having an invariant ellipse can be written into the form x=x2+y2-1+y(ax+by+c),y=x(ax+by+c),and the ellipse becomes x2+y2=1.We prove that(i) this quadratic system is analytic integrable if and only if a=0;(ii) if x2+y2=1 is a periodic orbit,then this quadratic system is Liouvillian integrable if and only if x2+y2=1 is not a limit cycle;and(iii) if x2+y2=1 is not a periodic orbit,then this quadratic system is Liouvilian integrable if and only if a=0. 展开更多
关键词 liouvillian integrability quadratic planar polynomial vector fields invariant ellipse
原文传递
THE EVOLUTION OF THE DENSITY OPERATORFOR DRIVEN SYSTEM
4
作者 毕桥 《Acta Mathematica Scientia》 SCIE CSCD 1999年第1期97-106,共10页
For studying the evolution of the density operator of the time-dependent dynamical system author presents here a general reformulation of subdynamics of driven system to obtain the efficient dynamical equation. The ex... For studying the evolution of the density operator of the time-dependent dynamical system author presents here a general reformulation of subdynamics of driven system to obtain the efficient dynamical equation. The explicit formulas to calculate the creation operator and the destruction operator are given. A new intertwining relation is discussed, The method presented here can be useful to get the evolution formalism of the density operator for any system driven by an external field. 展开更多
关键词 SUBDYNAMICS density operator driven system time-dependent liouvillian
下载PDF
Orthogonal separable Hamiltonian systems on T^2
5
作者 Cheng CHEN Fei LIU Xiang ZHANG 《Science China Mathematics》 SCIE 2007年第12期1735-1747,共13页
In this paper we characterize the Liouvillian integrable orthogonal separable Hamiltonian systems on T2 for a given metric, and prove that the Hamiltonian flow on any compact level hypersurface has zero topological en... In this paper we characterize the Liouvillian integrable orthogonal separable Hamiltonian systems on T2 for a given metric, and prove that the Hamiltonian flow on any compact level hypersurface has zero topological entropy. Furthermore, by examples we show that the integrable Hamiltonian systems on T2 can have complicated dynamical phenomena. For instance they can have several families of invariant tori, each family is bounded by the homoclinic-loop-like cylinders and heteroclinic-loop-like cylinders. As we know, it is the first concrete example to present the families of invariant tori at the same time appearing in such a complicated way. 展开更多
关键词 HAMILTONIAN system liouvillian integrability ORTHOGONAL separable RIEMANNIAN metric dynamics entropy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部