Lipid droplets(LDs)participate in many physiological processes,the abnormality of which will cause chronic diseases and pathologies such as diabetes and obesity.It is crucial to monitor the distribution of LDs at high...Lipid droplets(LDs)participate in many physiological processes,the abnormality of which will cause chronic diseases and pathologies such as diabetes and obesity.It is crucial to monitor the distribution of LDs at high spatial resolution and large depth.Herein,we carried three-photon imaging of LDs in fat liver.Owing to the large three-photon absorption cross-section of the luminogen named NAP-CF_(3)(1:67×10^(-79) cm^(6) s^(2)),three-photon fluorescence fat liver imaging reached the largest depth of 80μm.Fat liver diagnosis was successfully carried out with excellent performance,providing great potential for LDs-associated pathologies research.展开更多
Lipid droplets(LDs)are dynamic organelles interacting with a variety of intracellular organelles.Tracking intracellular LD dynamics employing synthetic small molecules is crucial for biological studies.Fluorescence im...Lipid droplets(LDs)are dynamic organelles interacting with a variety of intracellular organelles.Tracking intracellular LD dynamics employing synthetic small molecules is crucial for biological studies.Fluorescence imaging in the red and near infrared(NIR)region is more suitable for biological imaging due to its low phototoxicity and high signal-to-noise ratio.However,available LD-dyes in the red region with remarkable environmental sensitivity,selectivity for LDs staining are limited.Here,we constructed a red-emission D-π-A-π type LDdye LD 688P with higher environmental sensitivity and suitable“calculated log P”(Clog P)for LDs dynamic imaging.LD 688P was proved to be highly selective and photostable for tracing LD fusion including multiple consecutive fusions and fusions in a centrosymmetric manner by super-resolution microscopy.We believe that the D-π-A-π skeleton would be an efficient strategy to construct red and even NIR-emission dyes.展开更多
Lipid droplets(LDs)participating in various cellular activities and are increasingly being emphasized.Fluorescence imaging provides powerful tool for dynamic tracking of LDs,however,most current LDs probes remain inco...Lipid droplets(LDs)participating in various cellular activities and are increasingly being emphasized.Fluorescence imaging provides powerful tool for dynamic tracking of LDs,however,most current LDs probes remain inconsistent performance such as low Photoluminescence Quantum Yield(PLQY),poor photostability and tedious washing procedures.Herein,a novel yellow-emissive carbon dot(OT-cD)has been synthesized conveniently with high PLQY up to 90%.Besides,OT-CD exhibits remarkable amphiphilicity and solvatochromic property with lipid-water partition coefficient higher than 2,which is much higher than most LDs probes.These characters enable OT-CD high brightness,stable and wash-free LDs probing,and feasible for in vivo imaging.Then,detailed observation of LDs morphological and polarity variation dynamically in different cellular states were recorded,including ferroptosis and other diseases processes.Furthermore,fast whole imaging of zebrafish and identifed LD enrichment in injured liver indicate its further feasibility for in vivo application.In contrast to the reported studies to date,this approach provides a versatile conventional synthesis system for high-performance LDs targeting probes,combing the advantages of easy and high-yield production,as well as robust brightness and stability for long-term imaging,facilitating investigations into organelle interactions and LD-associated diseases.展开更多
The application of fluorescent probes for in vivo retinal imaging is of great importance,which could provide direct and crucial imaging evidence for a better understanding of common eye diseases.Herein,a group of brig...The application of fluorescent probes for in vivo retinal imaging is of great importance,which could provide direct and crucial imaging evidence for a better understanding of common eye diseases.Herein,a group of bright organic luminogens with typical electron-donating(D)and electron-accepting(A)structures(abbreviated as LDs-BDM,LDs-BTM,and LDs-BHM)was synthesized through a simple single-step reaction.They were found to be efficient solid-state emitters with high fluorescence quantum yields of above 70%(e.g.,83.7%for LDs-BTM).Their light-emission properties could be tuned by the modulation ofπ-conjugation effect with methoxy groups at different substituent positions.Their resulting fluorescent nanoparticles(NPs)were demonstrated as specific lipid droplets(LDs)targeting probes with high brightness,good biocompatibility,and satisfactory photostability.LDs-BTM NPs with a large two-photon absorption cross section(σ2=249 GM)were further utilized as ultrabright two-photon fluorescence(2PF)nanoprobes for in vivo retina imaging of live zebrafish by NIR excitation at an ultralow concentration(0.5μmol/L).Integrated histological structures at the tissue level and corresponding fine details at the cellular level of the embryonic retina of live zebrafish were clearly demonstrated.This is the first report of using ultrabright LDs-targeting nanoprobes to accurately measure fine details in the retina with 2PF microscopic technique.These good results are anticipated to open up a new avenue in the development of efficient 2PF emitters for non-invasive bioimaging of living animals.展开更多
The need for temporal resolution and long-term stability in super-resolution fluorescence imaging has motivated research to improve the photostability of fluorescent probes.Due to the inevitable photobleaching of fluo...The need for temporal resolution and long-term stability in super-resolution fluorescence imaging has motivated research to improve the photostability of fluorescent probes.Due to the inevitable photobleaching of fluorophores,it is difficult to obtain long-term super-resolution imaging regardless of the self-healing strategy of introducing peroxide scavengers or the strategy of fluorophore structure modification to suppress TICT formation.The buffered fluorogenic probe uses the intact probes in the buffer pool to continuously replace the photobleached ones in the target,which greatly improves the photostability and enables stable dynamic super-resolution imaging for a long time.But the buffering capacity comes at the expense of reducing the number of fluorescent probes in targets,resulting in low staining fluorescence intensity.In this paper,we selected BODIPY 493,a lipid droplet probe with high fluorescence brightness,to explore the dynamic process of lipid droplet staining of this probe in cells.We found that BODIPY 493 only needs very low laser power for lipid droplet imaging due to the high molecular accumulation in lipid droplets and the high brightness,and the spatiotemporal resolution is greatly improved.More importantly,we found that BODIPY 493 also has a certain buffering capacity,which enables BODIPY 493 to be used for super-resolution imaging of lipid droplet dynamics.This work reminds researchers to coordinate the buffering capacity and brightness of fluorogenic probes.展开更多
Long-term fluorescence monitoring of subcellular organelles is crucial for cellular physiology and pathology studies.Lipid droplets(LDs)are increasingly recognized for their involvement in various biological processes...Long-term fluorescence monitoring of subcellular organelles is crucial for cellular physiology and pathology studies.Lipid droplets(LDs)are increasingly recognized for their involvement in various biological processes,to influence disease development through diverse behaviors However,existing LD probes face challenges in achieving high targeting and long-term monitoring due to poor photostability and long-term phototoxicity.Carbon quantum dots(CQDs)have gained prominence due to their exceptional fluorescence properties,but their prevalent blue excitation wavelength presents difficulties for long-term imaging.Herein,we synthesized red-emissive carbon quantum dot(R-CQDs)with superior photobleaching resistance and red-emission,thus enabling harmlessly fluorescence monitoring of cells longer than3 h.In addition,R-CQD exhibits suitable amphiphilicity and remarkable solvatochromic effect,allowing rapid targeting to LDs for immediate imaging without cumbersome washing steps.Hence,R-CQD shows high performance for extended observation of dynamic LD behavior in various biological processes,which is confirmed by documenting the course of LDs during starvation as well as lipotoxicity.Compared to commercial probes,R-CQD extends live cell imaging time by at least 9-fold,facilitating the study of LD behavioral characteristics under diverse physiological or pathological conditions.This work provides a reliable fluorescence tool for tracking intercellular microenvironment dynamically thus to understand the divers biological or disease mechanism.展开更多
基金supported by National Natural Science Foundation of China (61975172,82001874,62105184)the Guangdong Basic and Applied Basic Research Foundation (2020A1515110578).
文摘Lipid droplets(LDs)participate in many physiological processes,the abnormality of which will cause chronic diseases and pathologies such as diabetes and obesity.It is crucial to monitor the distribution of LDs at high spatial resolution and large depth.Herein,we carried three-photon imaging of LDs in fat liver.Owing to the large three-photon absorption cross-section of the luminogen named NAP-CF_(3)(1:67×10^(-79) cm^(6) s^(2)),three-photon fluorescence fat liver imaging reached the largest depth of 80μm.Fat liver diagnosis was successfully carried out with excellent performance,providing great potential for LDs-associated pathologies research.
基金supported by the National Natural Science Foundation of China(22078314,21878286,and 21908216)Dalian Institute of Chemical Physics(DICPI202142,DICPI201938,and DICPZZBS201805)+1 种基金the support from A^(*)STAR under its Advanced Manufacturing and Engineering Program(A2083c0051)the Ministry of Education,Singapore(MOE-MOET2EP10120-0007)
文摘Lipid droplets(LDs)are dynamic organelles interacting with a variety of intracellular organelles.Tracking intracellular LD dynamics employing synthetic small molecules is crucial for biological studies.Fluorescence imaging in the red and near infrared(NIR)region is more suitable for biological imaging due to its low phototoxicity and high signal-to-noise ratio.However,available LD-dyes in the red region with remarkable environmental sensitivity,selectivity for LDs staining are limited.Here,we constructed a red-emission D-π-A-π type LDdye LD 688P with higher environmental sensitivity and suitable“calculated log P”(Clog P)for LDs dynamic imaging.LD 688P was proved to be highly selective and photostable for tracing LD fusion including multiple consecutive fusions and fusions in a centrosymmetric manner by super-resolution microscopy.We believe that the D-π-A-π skeleton would be an efficient strategy to construct red and even NIR-emission dyes.
基金the National Natural Science Foundation of China(grant numbers:52003178 and 51973132)Intermnational Science and Technology Innovation Cooperation Foundation of Sichuan Province(grant number:2022YFH0086)Natural Science Foundation of Sichuan Province(grant number:2023NSFSC0338 and 2023NSFSC1067).
文摘Lipid droplets(LDs)participating in various cellular activities and are increasingly being emphasized.Fluorescence imaging provides powerful tool for dynamic tracking of LDs,however,most current LDs probes remain inconsistent performance such as low Photoluminescence Quantum Yield(PLQY),poor photostability and tedious washing procedures.Herein,a novel yellow-emissive carbon dot(OT-cD)has been synthesized conveniently with high PLQY up to 90%.Besides,OT-CD exhibits remarkable amphiphilicity and solvatochromic property with lipid-water partition coefficient higher than 2,which is much higher than most LDs probes.These characters enable OT-CD high brightness,stable and wash-free LDs probing,and feasible for in vivo imaging.Then,detailed observation of LDs morphological and polarity variation dynamically in different cellular states were recorded,including ferroptosis and other diseases processes.Furthermore,fast whole imaging of zebrafish and identifed LD enrichment in injured liver indicate its further feasibility for in vivo application.In contrast to the reported studies to date,this approach provides a versatile conventional synthesis system for high-performance LDs targeting probes,combing the advantages of easy and high-yield production,as well as robust brightness and stability for long-term imaging,facilitating investigations into organelle interactions and LD-associated diseases.
基金the National Natural Science Foundation of China(Nos.81902356,82072581,21971265 and 82272842)Programs for Medical Science and Technology Research Project of Henan Province Health Commission(Nos.2018020025,SB201901029)+2 种基金Henan Province Young and Middle-Aged Health Science and Technology Innovation Talent Project(No.YXKC2022032)Shenzhen Key Laboratory of Functional Aggregate Materials(No.ZDSYS20211021111400001)Provincial Science and Technology R&D Program Joint Fund of the Department of Science and Technology of Henan Province(superior discipline cultivation category)Key Project(No.222301420018)。
文摘The application of fluorescent probes for in vivo retinal imaging is of great importance,which could provide direct and crucial imaging evidence for a better understanding of common eye diseases.Herein,a group of bright organic luminogens with typical electron-donating(D)and electron-accepting(A)structures(abbreviated as LDs-BDM,LDs-BTM,and LDs-BHM)was synthesized through a simple single-step reaction.They were found to be efficient solid-state emitters with high fluorescence quantum yields of above 70%(e.g.,83.7%for LDs-BTM).Their light-emission properties could be tuned by the modulation ofπ-conjugation effect with methoxy groups at different substituent positions.Their resulting fluorescent nanoparticles(NPs)were demonstrated as specific lipid droplets(LDs)targeting probes with high brightness,good biocompatibility,and satisfactory photostability.LDs-BTM NPs with a large two-photon absorption cross section(σ2=249 GM)were further utilized as ultrabright two-photon fluorescence(2PF)nanoprobes for in vivo retina imaging of live zebrafish by NIR excitation at an ultralow concentration(0.5μmol/L).Integrated histological structures at the tissue level and corresponding fine details at the cellular level of the embryonic retina of live zebrafish were clearly demonstrated.This is the first report of using ultrabright LDs-targeting nanoprobes to accurately measure fine details in the retina with 2PF microscopic technique.These good results are anticipated to open up a new avenue in the development of efficient 2PF emitters for non-invasive bioimaging of living animals.
基金supported by the National Natural Science Foundation of China(Nos.22078314,21878286,21908216).
文摘The need for temporal resolution and long-term stability in super-resolution fluorescence imaging has motivated research to improve the photostability of fluorescent probes.Due to the inevitable photobleaching of fluorophores,it is difficult to obtain long-term super-resolution imaging regardless of the self-healing strategy of introducing peroxide scavengers or the strategy of fluorophore structure modification to suppress TICT formation.The buffered fluorogenic probe uses the intact probes in the buffer pool to continuously replace the photobleached ones in the target,which greatly improves the photostability and enables stable dynamic super-resolution imaging for a long time.But the buffering capacity comes at the expense of reducing the number of fluorescent probes in targets,resulting in low staining fluorescence intensity.In this paper,we selected BODIPY 493,a lipid droplet probe with high fluorescence brightness,to explore the dynamic process of lipid droplet staining of this probe in cells.We found that BODIPY 493 only needs very low laser power for lipid droplet imaging due to the high molecular accumulation in lipid droplets and the high brightness,and the spatiotemporal resolution is greatly improved.More importantly,we found that BODIPY 493 also has a certain buffering capacity,which enables BODIPY 493 to be used for super-resolution imaging of lipid droplet dynamics.This work reminds researchers to coordinate the buffering capacity and brightness of fluorogenic probes.
基金supported by the National Natural Science Foundation of China(Nos.52003178,52273141 and 51973132)Natural Science Foundation of Sichuan Province(No.2023NSFSC0338)。
文摘Long-term fluorescence monitoring of subcellular organelles is crucial for cellular physiology and pathology studies.Lipid droplets(LDs)are increasingly recognized for their involvement in various biological processes,to influence disease development through diverse behaviors However,existing LD probes face challenges in achieving high targeting and long-term monitoring due to poor photostability and long-term phototoxicity.Carbon quantum dots(CQDs)have gained prominence due to their exceptional fluorescence properties,but their prevalent blue excitation wavelength presents difficulties for long-term imaging.Herein,we synthesized red-emissive carbon quantum dot(R-CQDs)with superior photobleaching resistance and red-emission,thus enabling harmlessly fluorescence monitoring of cells longer than3 h.In addition,R-CQD exhibits suitable amphiphilicity and remarkable solvatochromic effect,allowing rapid targeting to LDs for immediate imaging without cumbersome washing steps.Hence,R-CQD shows high performance for extended observation of dynamic LD behavior in various biological processes,which is confirmed by documenting the course of LDs during starvation as well as lipotoxicity.Compared to commercial probes,R-CQD extends live cell imaging time by at least 9-fold,facilitating the study of LD behavioral characteristics under diverse physiological or pathological conditions.This work provides a reliable fluorescence tool for tracking intercellular microenvironment dynamically thus to understand the divers biological or disease mechanism.