As a highly aggressive tumor,the pathophysiological mechanism of primary liver cancer has attracted much attention.In recent years,factors such as ferroptosis regulation,lipid peroxidation and metabolic abnormalities ...As a highly aggressive tumor,the pathophysiological mechanism of primary liver cancer has attracted much attention.In recent years,factors such as ferroptosis regulation,lipid peroxidation and metabolic abnormalities have emerged in the study of liver cancer,providing a new perspective for understanding the development of liver cancer.Ferroptosis regulation,lipid peroxidation and metabolic abnormalities play important roles in the occurrence and development of liver cancer.The regulation of ferroptosis is involved in apoptosis and necrosis,affecting cell survival and death.Lipid peroxidation promotes oxidative damage and promotes the invasion of liver cancer cells.Metabolic abnormalities,especially the disorders of glucose and lipid metabolism,directly affect the proliferation and growth of liver cancer cells.Studies of ferroptosis regulation and lipid peroxidation may help to discover new therapeutic targets and improve therapeutic outcomes.The understanding of metabolic abnormalities can provide new ideas for the prevention of liver cancer,and reduce the risk of disease by adjusting the metabolic process.This review focuses on the key roles of ferroptosis regulation,lipid peroxidation and metabolic abnormalities in this process.展开更多
Correction to“Research progress of ferroptosis regulating lipid peroxidation and metabolism in occurrence and development of primary liver cancer”in World J Gastrointest Oncol 2024;16:2335-2349,published by Shu YJ,L...Correction to“Research progress of ferroptosis regulating lipid peroxidation and metabolism in occurrence and development of primary liver cancer”in World J Gastrointest Oncol 2024;16:2335-2349,published by Shu YJ,Lao B,and Qiu YY.In this article,we added the correct citations of images.展开更多
BACKGROUND Gastric cancer is one of the most common malignant tumors in the world,and its occurrence and development involve complex biological processes.Iron death,as a new cell death mode,has attracted wide attentio...BACKGROUND Gastric cancer is one of the most common malignant tumors in the world,and its occurrence and development involve complex biological processes.Iron death,as a new cell death mode,has attracted wide attention in recent years.However,the regulatory mechanism of iron death in gastric cancer and its effect on lipid peroxidation metabolism remain unclear.AIM To explore the role of iron death in the development of gastric cancer,reveal its relationship with lipid peroxidation,and provide a new theoretical basis for revealing the molecular mechanism of the occurrence and development of gastric cancer.METHODS The process of iron death in gastric cancer cells was simulated by cell culture model,and the occurrence of iron death was detected by fluorescence microscopy and flow cytometry.The changes of gene expression related to iron death and lipid peroxidation metabolism were analyzed by high-throughput sequencing technology.In addition,a mouse model of gastric cancer was established,and the role of iron death in vivo was studied by histology and immunohistochemistry,and the level of lipid peroxidation was detected.These methods comprehensively and deeply reveal the regulatory mechanism of iron death on lipid peroxidation metabolism in the occurrence and development of gastric cancer.RESULTS Iron death was significantly activated in gastric cancer cells,and at the same time,associated lipid peroxidation levels increased significantly.Through high-throughput sequencing analysis,it was found that iron death regulated the expression of several genes related to lipid metabolism.In vivo experiments demonstrated that increased iron death in gastric cancer mice was accompanied by a significant increase in lipid peroxidation.CONCLUSION This study confirmed the important role of iron death in regulating lipid peroxidation metabolism in the occurrence and development of gastric cancer.The activation of iron death significantly increased lipid peroxidation levels,revealing its regulatory mechanism inside the cell.展开更多
Vegetable oils are a source of energy, essential fatty acids, antioxidants and fat-soluble vitamins useful for human health care and development. These oils also contribute to organoleptic quality of their products’ ...Vegetable oils are a source of energy, essential fatty acids, antioxidants and fat-soluble vitamins useful for human health care and development. These oils also contribute to organoleptic quality of their products’ derivatives. However, their chemical and physical properties can be modified by the mode of their extraction, storage and distribution. These modifications might negatively affect the nutritional quality of the oils. The goals of this study were to: sample different vegetable oils for cosmetic or dietary use marketed in Cameroon, and verify purity and oxidation states of each kind of oil through determination of its acidity, iodine, peroxide, saponification, refractive indexes and the conformity of the labeling. The carotene content, the level of polar components and specific absorbance were also determined. As the result, six oils namely palm, palm kernel, coconut, black cumin, peanut and shea butter were collected. Apart from labeling, chemicals and physicals parameters analyzed were generally in accordance with the Cameroonian and Codex Alimentarius standard. This study suggests that vegetable oils sampled in the Cameroonian market may not expose consumers to lipid oxidation products generating pathological oxidative stress and inflammation. However, efforts in application of existing standard need to be done as far as labeling are concerned.展开更多
Ferroptosis is a novel form of cell death driven by iron-dependent lipid peroxidation and it is implicated in various diseases,such as liver disease,acute kidney injury,cardiovascular disease,neurodegenerative disease...Ferroptosis is a novel form of cell death driven by iron-dependent lipid peroxidation and it is implicated in various diseases,such as liver disease,acute kidney injury,cardiovascular disease,neurodegenerative disease and cancer.Lipid-based reactive oxygen species(ROS),particularly lipid hydroperoxides in the cellular membrane can lead to membrane disruption and cell death mediated by ferroptosis.There are three necessary stages involving in the process of lipid peroxidation regulation in ferroptosis,including the synthesis of membrane phospholipids,initiation of lipid peroxidation and clearance of lipid peroxides.In this review,we summarized the molecular modulation mechanisms of lipid peroxidation in ferroptosis from the above three stages,as well as various ferroptosis modulators targeting lipid peroxidation,including commonly used products,natural bioactive compounds and selenocompounds.Collectively,these findings suggest the vital role of lipid peroxidation in ferroptosis,and targeting lipid peroxidation in ferroptosis is potential to treat ferroptosis-associated diseases.展开更多
With indica ( Oryza sativa L.) hybrid Shanyou 63 as control, the hybrid rice varieties including Peiai 64S/E32, Peiai 64S/9311, X07S/Zihui 100, Guangyou 881 and japonica 9516 were used to study changes of chlorophyll ...With indica ( Oryza sativa L.) hybrid Shanyou 63 as control, the hybrid rice varieties including Peiai 64S/E32, Peiai 64S/9311, X07S/Zihui 100, Guangyou 881 and japonica 9516 were used to study changes of chlorophyll content, photosynthetic response to light intensity and temperature, chlorophyll fluorescence characteristics and membrane lipid peroxidation in their flag leaves at the late stage of development under natural conditions in Nanjing. The results were as follows:. primary photochemical efficiency of PS II ( F-v / F-m), quantum yield of linear electron transport of PS II (phi(PSII)), electron transfer rate (ETR) in these rice varieties decreased with their decrease of chlorophyll content during this period. This kind of impediment to energy conversion induced the transfer of excessive energy to the reducing side of PS I, hence the accumulation of O-2(radical anion) and peroxidation of membrane lipid, and resulting in the accumulation of malondialdehyde (MDA), that is the destroys of photosynthetic pigments and membranes and the consequent, premature senescence. This phenomenon is variable conspicuously in different rice varieties. Under natural condition in Nanjing, F-v/F-m, phi(PSII), ETR and quenching coefficient ( qP) in japonica 9516 tolerant to photooxidation decreased less and the conversion capacity of light energy was stable, premature senescence was unlikely, and consequently the seed-setting rate was higher. While F-v/F-m, phi(PSII), ETR and photochemical qP in Shanyou 63 sensitive to photooxidation decreased more and therefore premature senescence was easy to happen, thus the seed-setting rate and yield were all reduced. The tolerance to photooxidation and premature senescence in other hybrids derived from typical two line or three line crossing laid in the middle. From the rice breeding for super-high-yield, on the basis of the good plant-type of current rice, considering both hybrid vigor and the prevention premature senescence, it would be a notable strategy to use japonica maternal line or maternal. lines with some japonica genotype as the sterile lines in rice breeding.展开更多
[Objective] Effects of different concentrations of nitric oxide on membrane lipid peroxidation of wheat induced by enhanced UV-B radiation were researched,sodium nitroprusside (SNP) was selected as an exogenous nitr...[Objective] Effects of different concentrations of nitric oxide on membrane lipid peroxidation of wheat induced by enhanced UV-B radiation were researched,sodium nitroprusside (SNP) was selected as an exogenous nitric oxide(NO)donor.[Method] There are 3 groups including CK,UV treatment group (B),B+SNP treatment group,0,1,2,3,4 d sampling after treatment respectively,and physiological and biochemical indexes of MDA content and CAT,POD,SOD and so on were determined,repeated 3 times,and statistical analyzed.[Result] The results showed that,after the enhanced UV-B radiation,activity of the catalase (CAT),superoxide dismutase (SOD) and of the guaiacol peroxidase (POD) all reduced apparently,and the concentration of malondialdehyde (MDA) increased obviously,leading to oxidative damage in wheat seedlings.Impose different concentrations of SNP after UV-B radiation,may mitigate oxidative damage of wheat seedling from different degrees,which was in agreement with the effect of making the concentration of MDA decrease and the activity of the CAT,SOD and POD all increased.The mitigation role of 0.01 mol/L SNP was more obvious for roots' oxidative damage,while 0.1 mmol/L SNP is more effective for oxidative damage of leaves.[Conclusion] Exogenous NO donor SNP had obvious relieve effects on oxidative damage of wheat seedlings caused by UV-B radiation,which can enhance adaptive capacity of plants to adversity stress.展开更多
Inspired by the function of crucial components in photosystemⅡ(PSⅡ),electrochemical and dyesensitized photoelectrochemical(DSPEC)water oxidation devices were constructed by the selfassembly of well-designed amphipat...Inspired by the function of crucial components in photosystemⅡ(PSⅡ),electrochemical and dyesensitized photoelectrochemical(DSPEC)water oxidation devices were constructed by the selfassembly of well-designed amphipathic Ru(bda)-based catalysts(bda=2,2'-bipyrdine-6,6'-dicarbonoxyl acid)and aliphatic chain decorated electrode surfaces,forming lipid bilayer membrane(LBM)-like structures.The Ru(bda)catalysts on electrode-supported LBM films demonstrated remarkable water oxidation performance with different O-O formation mechanisms.However,compared to the slow charge transfer process,the O-O formation pathways did not determine the PEC water oxidation efficiency of the dyesensitized photoanodes,and the different reaction rates for similar catalysts with different catalytic paths did not determine the PEC performance of the DSPECs.Instead,charge transfer plays a decisive role in the PEC water oxidation rate.When an indolo[3,2-b]carbazole derivative was introduced between the Ru(bda)catalysts and aliphatic chain-modified photosensitizer in LBM films,serving as a charge transfer mediator for the tyrosine-histidine pair in PSⅡ,the PEC water oxidation performance of the corresponding photoanodes was dramatically enhanced.展开更多
[ Objective] The aim was to provide strategies for development of rare earth and control of environmental pollution. [ Method] Responses of membrane lipid peroxidation and endogenous hormones of soybean seedlings to U...[ Objective] The aim was to provide strategies for development of rare earth and control of environmental pollution. [ Method] Responses of membrane lipid peroxidation and endogenous hormones of soybean seedlings to UV-B radiation and rare earth were studied through hydroponics in laboratory. [ Result] The results showed that under irradiation of UV-B( T1-0.15 W/m^2 and T2-0.45 W/m^2), chlorophyll and indole-3-acetic acid(IAA) contents firstly decreased during the stress phase (1 -5 d) and then increased during the restoration phase (6 -9 d) while contents of malonadialdehyde(MDA) and abscisic acid(ABA) gradually increased during the imposition of UV-B radiation (1 -5 d) and subsequently decreased during recovery from UV-B stress (6 -9 d) . With adding of La (III) with the concentration of 20 mg · L^-1 , the decline/dse trend of chlorophyll, IAA, MDA and ABA contents was slowed down during the stress period while the rise/decline speed was accelerated during the recovery period. [ Conclusion] It suggests that the regulation of La ( III ) on membrane lipid peroxidation and endogenous hormones could increase chlorophyll and IAA contents, improve the metabolism of reactive oxygen species ( ROS), inhibit membrane lipid peroxidation, decrease the accumulation amount of ABA and alleviate injury of UV-B radiation to soybean seedlings. Further, the protective potential of La ( III ) was better under low UV-B radiation than under high one.展开更多
The efifciency of extracts from Arbutus unedo L. (AU), Crataegus monogyna L. (CM), Rosa canina L. (RC), and Rubus ulmifolius Schott. (RU) to inhibit lipid oxidation in raw, cooked and cooked and chilled (2...The efifciency of extracts from Arbutus unedo L. (AU), Crataegus monogyna L. (CM), Rosa canina L. (RC), and Rubus ulmifolius Schott. (RU) to inhibit lipid oxidation in raw, cooked and cooked and chilled (2°C/12 d) porcine burger patties, was investigated. The modiifcation of the fatty acid proifle during processing treatments (cooking and chilling), the quantitative measurements of thiobarbituric acid reactive substances (TBA-RS), and lipid-derived volatiles, were used as indicators of lipid oxidation. Polyunsaturated fatty acids (PUFA) gradually decreased during cooking and the subsequent storage of cooked burger patties with this decrease being signiifcantly greater (P〈0.05) in control patties than in those with added berry extracts. In accordance, the control patties showed signiifcantly higher TBA-RS numbers and counts of lipid-derived volatiles in all treatments when compared to the berry-added counterparts (P〈0.05). Results from the present work show, for the ifrst time, that extracts from A. unedo, C. monogyna, R. canina, and R. ulmifolius are promising antioxidants which could enhance the nutritional, safety and sensory properties of porcine burger patties.展开更多
Relationships between fluorescence parameters and membrane lipid peroxidation in leaves of indica and japonica rice (Oryza sativa L.) during later growth stage were studied under chilling temperature and strong light ...Relationships between fluorescence parameters and membrane lipid peroxidation in leaves of indica and japonica rice (Oryza sativa L.) during later growth stage were studied under chilling temperature and strong light stress conditions. Results showed that D1 protein contents of PSⅡ in photosynthetic apparatus dropped, the generation of antheraxanthin (A) and zeaxanthin (Z) of xanthophyll cycle were inhibited partly, PSⅡ photochemical efficiency (F v/F m)and non-photochemical quenching (q N) were also decreased obviously. In addition, endogenous active oxygen scavenger—superoxide dismutase (SOD) reduced, superoxide anion radical (O -· 2) and malondialdehyde (MDA) accumulated, as a result, photooxidation of leaves occurred under chilling temperature and strong light stress conditions. Obvious differences in the changes of the above mentioned physiological parameters between indica and japonica rice were observed. Experiments in leaves treated with inhibitors under chilling temperature and strong light conditions showed that indica rice was more sensitive to chilling temperature with strong light and subjected to photooxidation more than japonica rice. Notable positive correlation between D1 protein contents and F v/F m or (A+Z)/(A+Z+V), and a marked negative correlation between F v/F m and MDA contents were obtained by regression analysis in indica and japonica rice during chilling temperature and strong light conditions. According to the facts mentioned above, it was inferred that PSⅡ photochemical efficiency(F v/F m) was the key index to forecast for the prediction of photooxidation under stress circumstances and the physiological basis were the synthetic capacity of D1 protein and the protection of xanthophyll cycle.展开更多
The effect of sodium chloride(NaCl)curing salt content on protein oxidation,lipid oxidation and lipolysis of Chinese dry sausage was investigated.Two groups Chinese dry sausages with 2%and 4%(m/m)salt content were stu...The effect of sodium chloride(NaCl)curing salt content on protein oxidation,lipid oxidation and lipolysis of Chinese dry sausage was investigated.Two groups Chinese dry sausages with 2%and 4%(m/m)salt content were studied.The degree of protein oxidation increased during the processes in two groups sausages,while the content of phospholipids decreased,neutral lipids and free fatty acids increased.The degree of protein oxidation,lipid oxidation and lipolysis in 4%NaCl content group was higher than those in 2%NaCl content group,while 4%NaCl content group has higher lipase activity.In conclusion,4%NaCl may facilitate the protein oxidation,lipid hydrolysis and oxidation in Chinese dry sausage,and the protein oxidation had strong correlation with lipid oxidation and lipolysis.The results could provide a basis for improving the technology of industrial production.展开更多
[ Objective] The aim of this study was to discuss the effect of antioxidants and lipid peroxidation from pea crops of plateau. [ Method] SOD enzyme liquid from pea crops of plateau was extracted by means of protein co...[ Objective] The aim of this study was to discuss the effect of antioxidants and lipid peroxidation from pea crops of plateau. [ Method] SOD enzyme liquid from pea crops of plateau was extracted by means of protein concentration assay, enzyme activity assay and antioxidant activity determination by DPPH method, peroxide activity inhibition of in vitro tissues from mice by homogenate MDA colorimetry method and lipid peroxidation assay of in vitro tissues. [ Result ] IC50 of the crude enzyme liquid extracted from pea on DPPH was 55.16 mg/L, while the scavenging rate of the crude enzyme liquid was lower than that of ascorbic acid, tea polyphenol and citric acid with the same concentration. The synergistic effect was found in ascorbic acid and crude enzyme liquid, but the synergism of ascorbic acid was better than that of citric acid. IC50 of SOD enzyme liquid extracted from pea on DPPH was 11.1 mg/L, which was better than that of tea polyphenol and closely similar to that of ascorbic acid. SOD enzyme liquid extracted from pea had an inhibitory effect on MDA production from in vitro tissues such as liver, kidney and heart, especially for a significantly inhibitory effect on MDA from liver in vitro. When the concentration was 0.25 mg/ml, the inhibition rate reached 78.3%, and then the inhibition rate increased little with the concentration incresas, while its effect on heart and kidney were inferior. [ Conclusion] SOD crude enzyme liquid and SOD enzyme liquid extracted from pea all have certain DPPH scavenging capacity, while SOD enzyme liquid extracted from pea has an inhibitory effect on lipid peroxidation.展开更多
Food provides abundant nutrients for human beings, but also has sensory functions and physiological regulation.Lipids are the main components of food as well as the important structural and functional components of ce...Food provides abundant nutrients for human beings, but also has sensory functions and physiological regulation.Lipids are the main components of food as well as the important structural and functional components of cells.Nevertheless, lipids are easily oxidized by different ways, such as thermal oxidation and air oxidation. Lipidoxidation has adverse effects on food quality and human health. Therefore, efforts should be made to reduce lipidoxidation and improve its stability. This review focuses on important knowledge about lipid oxidation, includingthe concept of lipids and lipid oxidation, the main pathways and mechanisms of lipid oxidation, factors affectinglipid oxidation, strategies to improve the stability of lipid oxidation, and the recent research progress of lipidoxidation in food science and nutritional health.展开更多
The main purpose of this study was to investigate the protective actions of captopril and cicaprost on changes of membrane fluidity of cultured neonatal rat myocardial cells exposed to anoxia and sugar deprivation.Lip...The main purpose of this study was to investigate the protective actions of captopril and cicaprost on changes of membrane fluidity of cultured neonatal rat myocardial cells exposed to anoxia and sugar deprivation.Lipid peroxidation level estimated by determining the thiobarbituric acid reactive substance(TBARS)content and lactate dehydrogenase(LDH)released in culture medium was also observed in order to examine other membrane-related changes due to anoxia.Membrane fluidity was monitored by measuring changes in the steady state fluorescence anisotropy(r_s)by fluorescence spectroscopy.The r_s value,TBARS level and LDH release were significantly increased after 3 h anoxia.Captopril(180 μmol/L),cicaprost(30 nmol/L)and indomethacin(1μmol/L)did not alter r_s, TBARS level and LDH activity of normal cultured neonatal rat myocardial cells.However,both captopril and cicaprost significantly prevented the increases of r_s,TBARS content and LDH release in those cells exposed to anoxia and sugar deprivation.lndomethacin abolished the actions of captopril on TBARS production and LDH release,but maintained its membrane fluidity protection.These results indicate that captopril and cicaprost protect membrane fluidity and lipid peroxidation changes in anoxia- injured myocardial cells.The action mechanism of captopril may be due,in part,to stimulation of prostacyclin synthesis and/or release.展开更多
[Objective] This study was conducted to evaluate the effect of 1-methylcy- clopropene (1-MCP) on fruit firmness, and the activity of the enzymes involved in ethylene metabolism and membrane lipid peroxidation. [Meth...[Objective] This study was conducted to evaluate the effect of 1-methylcy- clopropene (1-MCP) on fruit firmness, and the activity of the enzymes involved in ethylene metabolism and membrane lipid peroxidation. [Method] The nearly ripe fruits of the papaya cultivar Risheng were randomly assigned to one of four groups. Two groups were treated under hypobaric and hypoxic (HH) atmosphere condition for six hours, and immediately soaked in deionized water (HH alone), or fumigated with 2.0 mg/L 1-MCP (HH+I-MCP) for 24 h. The other two groups untreated under HH condition were also soaked in deionized water (negative control), or fumigated with 2.0 mg/L 1-MCP (1-MCP alone) for 24 h. After that, the fruits of all the four treatments were stored at room temperature (23+1) ℃. Cell membrane permeability, fruit firmness, respiration rate, ethylene release rate, SOD activity, POD activity, CAT activity, MAD content and LOX activity were measured once every three days during storage. [Result] Treatment with 1-MCP delayed the occurrence of the peaks of respiration rate and ethylene release rate, significantly reduced the accumulation of malondialdehyde (MDA), and inhibited the decrease in papaya fruit firmness. Compared with the control, 1-MCP treatment significantly increased the SOD (su- peroxide dismutase), POD (peroxidase) and CAT (catalase) activity, reduced the ac- tivity of lipoxygenase (LOX), a product of lipid peroxidatlon in membranes, and in- hibited ethylene biosynthesis, thus delaying the aging process and prolonging the storage life of papaya fruits. [Conclusion] The results will provide a theoretical basis for analvzina the key factors controllinq postharvest maturity and aging of papaya fruits.展开更多
Currently,there is a lack of effective medicines capable of halting or reve rsing the progression of neurodegenerative disorde rs,including amyotrophic lateral sclerosis,Parkinson s disease,multiple sclerosis,or Alzhe...Currently,there is a lack of effective medicines capable of halting or reve rsing the progression of neurodegenerative disorde rs,including amyotrophic lateral sclerosis,Parkinson s disease,multiple sclerosis,or Alzheimer s disease.Given the unmet medical need,it is necessary to reevaluate the existing para digms of how to to rget these diseases.When considering neurodegenerative diseases from a systemic neurometabolic perspective,it becomes possible to explain the shared pathological features.This innovative approach presented in this paper draws upon exte nsive research conducted by the authors and researchers worldwide.In this review,we highlight the importance of metabolic mitochondrial dysfunction in the context of neurodegenerative diseases.We provide an overview of the risk factors associated with developing neurodegenerative disorders,including genetic,epigenetic,and environmental fa ctors.Additionally,we examine pathological mechanisms implicated in these diseases such as oxidative stress,accumulation of misfolded proteins,inflammation,demyelination,death of neurons,insulin resistance,dysbiosis,and neurotransmitter disturbances.Finally,we outline a proposal for the restoration of mitochondrial metabolism,a crucial aspect that may hold the key to facilitating curative therapeutic interventions for neurodegenerative disorders in forthcoming advancements.展开更多
The mechanisms by which breviscapine (Bre) inhibits the lipid preoxidation in rat brain mitochondria were investigated. The mitochondrial lipid peroxidation of rat brain induced by oxygen free radical was measured by ...The mechanisms by which breviscapine (Bre) inhibits the lipid preoxidation in rat brain mitochondria were investigated. The mitochondrial lipid peroxidation of rat brain induced by oxygen free radical was measured by thiobarbituric acid spectrophotometry. The chelating activities of Bre for Fe 2+ were tested by differential spectrum. Superoxide anion (O 2)from xanthine xanthine oxidase (Xan XO) system and hydroxyl radical (·OH) from FeSO 4 H 2O 2 system were determined with spectrophotometry. It was found that Bre could effectively inhibit the lipid peroxidation of brain mitochondria induced by free radicals driven from Xan XO and FeSO 4 H 2O 2 system. The IC 50 of Bre were 93 01 μmol·L -1 for Xan XO system and 62 18 μmol·L -1 for FeSO 4 H 2O 2 system. Bre also scavenged O 2 and ·OH produced by Xan XO and FeSO 4 H 2O 2 systems. The IC 50 of Bre were 32 63 μmol·L -1 for O - 2 and 20 22 μmol·L -1 for ·OH. Furthermore, the chelating Fe 2+ activity of Bre was shown. It may be concluded that Bre inhibited lipid peroxidation at different stages of the reaction of oxygen free redial with the mitochondria membrane: (1) the formation of ·OH; (2) the initiation of the lipid peroxidation, by chelating Fe 2+ and scavenging O 2 as well as ·OH. The scavenging oxygen free radicals and chelating iron are the mechanisms of inhibitory effect of Bre on lipid peroxidation.展开更多
Aim: To examine the effects of melatonin treatment on lipid peroxidation (LPO) and the activities of antioxidant enzymes in the testicular tissue of streptozotocin (STZ)-induced diabetic rats. Methods: Twenty-si...Aim: To examine the effects of melatonin treatment on lipid peroxidation (LPO) and the activities of antioxidant enzymes in the testicular tissue of streptozotocin (STZ)-induced diabetic rats. Methods: Twenty-six male rats were randomly divided into three groups as follows: group Ⅰ, control, non-diabetic rats (n = 9); group Ⅱ, STZ-induced, untreated diabetic rats (n = 8); group Ⅲ, STZ-induced, melatonin-treated (dose of 10 mg/kg·day) diabetic rats (n = 9). Following 8-week melatonin treatment, all rats were anaesthetized and then were killed to remove testes from the scrotum. Results: As compared to group Ⅰ, in rat testicular tissues of grouap Ⅱ, increased levels of malondialdehyde (MDA) (P 〈 0.01) and superoxide dismutase (SOD) (P 〈 0.01) as well as, decreased levels of catalase (CAT) (P 〈 0.01) and glutathione peroxidase (GSH-Px) (P 〉 0.05) were found. In contrast, as compared to group Ⅱ, in rat testicular tissues of group Ⅲ, levels of MDA decreased (but this decrease was not significant, P 〉 0.05) and SOD (P 〈 0.01) as well as CAT (P 〈 0.05) increased. GSH-Px was not influenced by any of the treatment. Melatonin did not significantly affect the elevated glucose concentration of diabetic group. At the end of the study, there was no significant difference between the melatonin-treated group and the untreated group by means of body and testicular weight. Conclusion: Diabetes mellitus increases oxidative stress and melatonin inhibits lipid peroxidation and might regulate the activities of antioxidant enzymes of diabetic rat testes.展开更多
Objective:To investigate the ability of the methanolic extract of pineapple peel to modulate alcohol-induced lipid peroxidation,changes in catalase activities and hepatic biochemical marker levels in blood plasma.Meth...Objective:To investigate the ability of the methanolic extract of pineapple peel to modulate alcohol-induced lipid peroxidation,changes in catalase activities and hepatic biochemical marker levels in blood plasma.Methods:Oxidative stress was induced by oral administration of ethanol(20%w/v) at a dosage of 5 niL/kg bw in rats.After 28 days of treatment,the rats were fasted overnight and sacrificed by cervical dislocation.Blood was collected with a 2 mL syringe by cardiac puncture and was centrifuged at 3000 rpm for 10 min.The plasma was analyzed to evaluate malondialdehyde(MDA),catalase activity,aspartate aminotransferase(AST),alkaline phosphatase(ALP) and alanine aminotransferase(ALT) concentrations.Results:Administration of alcohol caused a drastic increase(87.74%) in MDA level compared with the control.Pineapple peel extract significantly reduced the MDA level by 60.16%at 2.S mL/kg bw.Rats fed alcohol only had the highest catalase activity,treatment with pineapple peel extract at 2.5 mL/kg bw however, reduced the activity.Increased AST,ALP and ALT activities were observed in rats fed alcohol only respectively,treatment with pineapple peel extract drastically reduced their activities. Conclusions:The positive modulation of lipid peroxidation,catalase activities as well as hepatic biomarker levels of blood plasma by the methanolic extract of pineapple peels under alcoholinduced oxidative stress is an indication of its protective ability in the management of alcoholinduced toxicity.展开更多
文摘As a highly aggressive tumor,the pathophysiological mechanism of primary liver cancer has attracted much attention.In recent years,factors such as ferroptosis regulation,lipid peroxidation and metabolic abnormalities have emerged in the study of liver cancer,providing a new perspective for understanding the development of liver cancer.Ferroptosis regulation,lipid peroxidation and metabolic abnormalities play important roles in the occurrence and development of liver cancer.The regulation of ferroptosis is involved in apoptosis and necrosis,affecting cell survival and death.Lipid peroxidation promotes oxidative damage and promotes the invasion of liver cancer cells.Metabolic abnormalities,especially the disorders of glucose and lipid metabolism,directly affect the proliferation and growth of liver cancer cells.Studies of ferroptosis regulation and lipid peroxidation may help to discover new therapeutic targets and improve therapeutic outcomes.The understanding of metabolic abnormalities can provide new ideas for the prevention of liver cancer,and reduce the risk of disease by adjusting the metabolic process.This review focuses on the key roles of ferroptosis regulation,lipid peroxidation and metabolic abnormalities in this process.
文摘Correction to“Research progress of ferroptosis regulating lipid peroxidation and metabolism in occurrence and development of primary liver cancer”in World J Gastrointest Oncol 2024;16:2335-2349,published by Shu YJ,Lao B,and Qiu YY.In this article,we added the correct citations of images.
文摘BACKGROUND Gastric cancer is one of the most common malignant tumors in the world,and its occurrence and development involve complex biological processes.Iron death,as a new cell death mode,has attracted wide attention in recent years.However,the regulatory mechanism of iron death in gastric cancer and its effect on lipid peroxidation metabolism remain unclear.AIM To explore the role of iron death in the development of gastric cancer,reveal its relationship with lipid peroxidation,and provide a new theoretical basis for revealing the molecular mechanism of the occurrence and development of gastric cancer.METHODS The process of iron death in gastric cancer cells was simulated by cell culture model,and the occurrence of iron death was detected by fluorescence microscopy and flow cytometry.The changes of gene expression related to iron death and lipid peroxidation metabolism were analyzed by high-throughput sequencing technology.In addition,a mouse model of gastric cancer was established,and the role of iron death in vivo was studied by histology and immunohistochemistry,and the level of lipid peroxidation was detected.These methods comprehensively and deeply reveal the regulatory mechanism of iron death on lipid peroxidation metabolism in the occurrence and development of gastric cancer.RESULTS Iron death was significantly activated in gastric cancer cells,and at the same time,associated lipid peroxidation levels increased significantly.Through high-throughput sequencing analysis,it was found that iron death regulated the expression of several genes related to lipid metabolism.In vivo experiments demonstrated that increased iron death in gastric cancer mice was accompanied by a significant increase in lipid peroxidation.CONCLUSION This study confirmed the important role of iron death in regulating lipid peroxidation metabolism in the occurrence and development of gastric cancer.The activation of iron death significantly increased lipid peroxidation levels,revealing its regulatory mechanism inside the cell.
文摘Vegetable oils are a source of energy, essential fatty acids, antioxidants and fat-soluble vitamins useful for human health care and development. These oils also contribute to organoleptic quality of their products’ derivatives. However, their chemical and physical properties can be modified by the mode of their extraction, storage and distribution. These modifications might negatively affect the nutritional quality of the oils. The goals of this study were to: sample different vegetable oils for cosmetic or dietary use marketed in Cameroon, and verify purity and oxidation states of each kind of oil through determination of its acidity, iodine, peroxide, saponification, refractive indexes and the conformity of the labeling. The carotene content, the level of polar components and specific absorbance were also determined. As the result, six oils namely palm, palm kernel, coconut, black cumin, peanut and shea butter were collected. Apart from labeling, chemicals and physicals parameters analyzed were generally in accordance with the Cameroonian and Codex Alimentarius standard. This study suggests that vegetable oils sampled in the Cameroonian market may not expose consumers to lipid oxidation products generating pathological oxidative stress and inflammation. However, efforts in application of existing standard need to be done as far as labeling are concerned.
基金supported by Jiangxi Provincial Natural Science Foundation(20224BAB216091,20224ACB205014)Jiangxi Provincial Department of Education Science and Technology Plan Project(GJJ2200420).
文摘Ferroptosis is a novel form of cell death driven by iron-dependent lipid peroxidation and it is implicated in various diseases,such as liver disease,acute kidney injury,cardiovascular disease,neurodegenerative disease and cancer.Lipid-based reactive oxygen species(ROS),particularly lipid hydroperoxides in the cellular membrane can lead to membrane disruption and cell death mediated by ferroptosis.There are three necessary stages involving in the process of lipid peroxidation regulation in ferroptosis,including the synthesis of membrane phospholipids,initiation of lipid peroxidation and clearance of lipid peroxides.In this review,we summarized the molecular modulation mechanisms of lipid peroxidation in ferroptosis from the above three stages,as well as various ferroptosis modulators targeting lipid peroxidation,including commonly used products,natural bioactive compounds and selenocompounds.Collectively,these findings suggest the vital role of lipid peroxidation in ferroptosis,and targeting lipid peroxidation in ferroptosis is potential to treat ferroptosis-associated diseases.
文摘With indica ( Oryza sativa L.) hybrid Shanyou 63 as control, the hybrid rice varieties including Peiai 64S/E32, Peiai 64S/9311, X07S/Zihui 100, Guangyou 881 and japonica 9516 were used to study changes of chlorophyll content, photosynthetic response to light intensity and temperature, chlorophyll fluorescence characteristics and membrane lipid peroxidation in their flag leaves at the late stage of development under natural conditions in Nanjing. The results were as follows:. primary photochemical efficiency of PS II ( F-v / F-m), quantum yield of linear electron transport of PS II (phi(PSII)), electron transfer rate (ETR) in these rice varieties decreased with their decrease of chlorophyll content during this period. This kind of impediment to energy conversion induced the transfer of excessive energy to the reducing side of PS I, hence the accumulation of O-2(radical anion) and peroxidation of membrane lipid, and resulting in the accumulation of malondialdehyde (MDA), that is the destroys of photosynthetic pigments and membranes and the consequent, premature senescence. This phenomenon is variable conspicuously in different rice varieties. Under natural condition in Nanjing, F-v/F-m, phi(PSII), ETR and quenching coefficient ( qP) in japonica 9516 tolerant to photooxidation decreased less and the conversion capacity of light energy was stable, premature senescence was unlikely, and consequently the seed-setting rate was higher. While F-v/F-m, phi(PSII), ETR and photochemical qP in Shanyou 63 sensitive to photooxidation decreased more and therefore premature senescence was easy to happen, thus the seed-setting rate and yield were all reduced. The tolerance to photooxidation and premature senescence in other hybrids derived from typical two line or three line crossing laid in the middle. From the rice breeding for super-high-yield, on the basis of the good plant-type of current rice, considering both hybrid vigor and the prevention premature senescence, it would be a notable strategy to use japonica maternal line or maternal. lines with some japonica genotype as the sterile lines in rice breeding.
基金Supported by National Natural Science Foundation of China(No.30671061)Natural Science Foundation of Shanxi Province(No.2008011059-1 and No.20041101)~~
文摘[Objective] Effects of different concentrations of nitric oxide on membrane lipid peroxidation of wheat induced by enhanced UV-B radiation were researched,sodium nitroprusside (SNP) was selected as an exogenous nitric oxide(NO)donor.[Method] There are 3 groups including CK,UV treatment group (B),B+SNP treatment group,0,1,2,3,4 d sampling after treatment respectively,and physiological and biochemical indexes of MDA content and CAT,POD,SOD and so on were determined,repeated 3 times,and statistical analyzed.[Result] The results showed that,after the enhanced UV-B radiation,activity of the catalase (CAT),superoxide dismutase (SOD) and of the guaiacol peroxidase (POD) all reduced apparently,and the concentration of malondialdehyde (MDA) increased obviously,leading to oxidative damage in wheat seedlings.Impose different concentrations of SNP after UV-B radiation,may mitigate oxidative damage of wheat seedling from different degrees,which was in agreement with the effect of making the concentration of MDA decrease and the activity of the CAT,SOD and POD all increased.The mitigation role of 0.01 mol/L SNP was more obvious for roots' oxidative damage,while 0.1 mmol/L SNP is more effective for oxidative damage of leaves.[Conclusion] Exogenous NO donor SNP had obvious relieve effects on oxidative damage of wheat seedlings caused by UV-B radiation,which can enhance adaptive capacity of plants to adversity stress.
基金conducted by the Fundamental Research Center of Artificial Photosynthesis(FReCAP)financially supported by the National Natural Science Foundation of China(22172011 and 22088102)+1 种基金the National Key R&D Program of China(2022YFA0911904)the Fundamental Research Funds for the Central Universities(DUT22LK06,DUT22QN213 and DUT23LAB611)。
文摘Inspired by the function of crucial components in photosystemⅡ(PSⅡ),electrochemical and dyesensitized photoelectrochemical(DSPEC)water oxidation devices were constructed by the selfassembly of well-designed amphipathic Ru(bda)-based catalysts(bda=2,2'-bipyrdine-6,6'-dicarbonoxyl acid)and aliphatic chain decorated electrode surfaces,forming lipid bilayer membrane(LBM)-like structures.The Ru(bda)catalysts on electrode-supported LBM films demonstrated remarkable water oxidation performance with different O-O formation mechanisms.However,compared to the slow charge transfer process,the O-O formation pathways did not determine the PEC water oxidation efficiency of the dyesensitized photoanodes,and the different reaction rates for similar catalysts with different catalytic paths did not determine the PEC performance of the DSPECs.Instead,charge transfer plays a decisive role in the PEC water oxidation rate.When an indolo[3,2-b]carbazole derivative was introduced between the Ru(bda)catalysts and aliphatic chain-modified photosensitizer in LBM films,serving as a charge transfer mediator for the tyrosine-histidine pair in PSⅡ,the PEC water oxidation performance of the corresponding photoanodes was dramatically enhanced.
基金Supported by the Foundation of State Developing and ReformingCommittee(No.IFZ20051210)the National Natural Science Foundationof China(No.30570323,No.20471030)the Programsin Science and Technology of Nantong(No.DE2009006,No.S2009019)~~
文摘[ Objective] The aim was to provide strategies for development of rare earth and control of environmental pollution. [ Method] Responses of membrane lipid peroxidation and endogenous hormones of soybean seedlings to UV-B radiation and rare earth were studied through hydroponics in laboratory. [ Result] The results showed that under irradiation of UV-B( T1-0.15 W/m^2 and T2-0.45 W/m^2), chlorophyll and indole-3-acetic acid(IAA) contents firstly decreased during the stress phase (1 -5 d) and then increased during the restoration phase (6 -9 d) while contents of malonadialdehyde(MDA) and abscisic acid(ABA) gradually increased during the imposition of UV-B radiation (1 -5 d) and subsequently decreased during recovery from UV-B stress (6 -9 d) . With adding of La (III) with the concentration of 20 mg · L^-1 , the decline/dse trend of chlorophyll, IAA, MDA and ABA contents was slowed down during the stress period while the rise/decline speed was accelerated during the recovery period. [ Conclusion] It suggests that the regulation of La ( III ) on membrane lipid peroxidation and endogenous hormones could increase chlorophyll and IAA contents, improve the metabolism of reactive oxygen species ( ROS), inhibit membrane lipid peroxidation, decrease the accumulation amount of ABA and alleviate injury of UV-B radiation to soybean seedlings. Further, the protective potential of La ( III ) was better under low UV-B radiation than under high one.
基金the Spanish Ministry of Science and Innovation for the contract through the Ramón y Cajal(RYC-2009-03901) programthe support through the project of Protein Oxidation in Frozen Meat and Dry-Cured Products:Mechanisms+2 种基金Consequences and Development of Antioxidant Strategies(AGL2010-15134)The European Community(Research Executive Agency) is also acknowledged for the Marie Curie Reintegration Fellowship(PERG05-GA-2009-248959 Pox-MEAT)
文摘The efifciency of extracts from Arbutus unedo L. (AU), Crataegus monogyna L. (CM), Rosa canina L. (RC), and Rubus ulmifolius Schott. (RU) to inhibit lipid oxidation in raw, cooked and cooked and chilled (2°C/12 d) porcine burger patties, was investigated. The modiifcation of the fatty acid proifle during processing treatments (cooking and chilling), the quantitative measurements of thiobarbituric acid reactive substances (TBA-RS), and lipid-derived volatiles, were used as indicators of lipid oxidation. Polyunsaturated fatty acids (PUFA) gradually decreased during cooking and the subsequent storage of cooked burger patties with this decrease being signiifcantly greater (P〈0.05) in control patties than in those with added berry extracts. In accordance, the control patties showed signiifcantly higher TBA-RS numbers and counts of lipid-derived volatiles in all treatments when compared to the berry-added counterparts (P〈0.05). Results from the present work show, for the ifrst time, that extracts from A. unedo, C. monogyna, R. canina, and R. ulmifolius are promising antioxidants which could enhance the nutritional, safety and sensory properties of porcine burger patties.
文摘Relationships between fluorescence parameters and membrane lipid peroxidation in leaves of indica and japonica rice (Oryza sativa L.) during later growth stage were studied under chilling temperature and strong light stress conditions. Results showed that D1 protein contents of PSⅡ in photosynthetic apparatus dropped, the generation of antheraxanthin (A) and zeaxanthin (Z) of xanthophyll cycle were inhibited partly, PSⅡ photochemical efficiency (F v/F m)and non-photochemical quenching (q N) were also decreased obviously. In addition, endogenous active oxygen scavenger—superoxide dismutase (SOD) reduced, superoxide anion radical (O -· 2) and malondialdehyde (MDA) accumulated, as a result, photooxidation of leaves occurred under chilling temperature and strong light stress conditions. Obvious differences in the changes of the above mentioned physiological parameters between indica and japonica rice were observed. Experiments in leaves treated with inhibitors under chilling temperature and strong light conditions showed that indica rice was more sensitive to chilling temperature with strong light and subjected to photooxidation more than japonica rice. Notable positive correlation between D1 protein contents and F v/F m or (A+Z)/(A+Z+V), and a marked negative correlation between F v/F m and MDA contents were obtained by regression analysis in indica and japonica rice during chilling temperature and strong light conditions. According to the facts mentioned above, it was inferred that PSⅡ photochemical efficiency(F v/F m) was the key index to forecast for the prediction of photooxidation under stress circumstances and the physiological basis were the synthetic capacity of D1 protein and the protection of xanthophyll cycle.
基金This study was financially supported by National Key R&D Program of China(grant No.2017YFD0400105)Natural Science Foundation of Beijing Municipality(grant No.6192009)Fengtai science and technology new star(grant No.KJXX201902).
文摘The effect of sodium chloride(NaCl)curing salt content on protein oxidation,lipid oxidation and lipolysis of Chinese dry sausage was investigated.Two groups Chinese dry sausages with 2%and 4%(m/m)salt content were studied.The degree of protein oxidation increased during the processes in two groups sausages,while the content of phospholipids decreased,neutral lipids and free fatty acids increased.The degree of protein oxidation,lipid oxidation and lipolysis in 4%NaCl content group was higher than those in 2%NaCl content group,while 4%NaCl content group has higher lipase activity.In conclusion,4%NaCl may facilitate the protein oxidation,lipid hydrolysis and oxidation in Chinese dry sausage,and the protein oxidation had strong correlation with lipid oxidation and lipolysis.The results could provide a basis for improving the technology of industrial production.
文摘[ Objective] The aim of this study was to discuss the effect of antioxidants and lipid peroxidation from pea crops of plateau. [ Method] SOD enzyme liquid from pea crops of plateau was extracted by means of protein concentration assay, enzyme activity assay and antioxidant activity determination by DPPH method, peroxide activity inhibition of in vitro tissues from mice by homogenate MDA colorimetry method and lipid peroxidation assay of in vitro tissues. [ Result ] IC50 of the crude enzyme liquid extracted from pea on DPPH was 55.16 mg/L, while the scavenging rate of the crude enzyme liquid was lower than that of ascorbic acid, tea polyphenol and citric acid with the same concentration. The synergistic effect was found in ascorbic acid and crude enzyme liquid, but the synergism of ascorbic acid was better than that of citric acid. IC50 of SOD enzyme liquid extracted from pea on DPPH was 11.1 mg/L, which was better than that of tea polyphenol and closely similar to that of ascorbic acid. SOD enzyme liquid extracted from pea had an inhibitory effect on MDA production from in vitro tissues such as liver, kidney and heart, especially for a significantly inhibitory effect on MDA from liver in vitro. When the concentration was 0.25 mg/ml, the inhibition rate reached 78.3%, and then the inhibition rate increased little with the concentration incresas, while its effect on heart and kidney were inferior. [ Conclusion] SOD crude enzyme liquid and SOD enzyme liquid extracted from pea all have certain DPPH scavenging capacity, while SOD enzyme liquid extracted from pea has an inhibitory effect on lipid peroxidation.
基金funded by National Natural Science Foundation of China(Grant No.U21A20274)We also gratefully acknowledge the support of the National Key R&D Program Key Special Project(Grant No.2021YFD1600103)+1 种基金Technology Innovation Project of Hubei Province(Grant No.2021BEC021)Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences(CAASASTIP-2013-OCRI).
文摘Food provides abundant nutrients for human beings, but also has sensory functions and physiological regulation.Lipids are the main components of food as well as the important structural and functional components of cells.Nevertheless, lipids are easily oxidized by different ways, such as thermal oxidation and air oxidation. Lipidoxidation has adverse effects on food quality and human health. Therefore, efforts should be made to reduce lipidoxidation and improve its stability. This review focuses on important knowledge about lipid oxidation, includingthe concept of lipids and lipid oxidation, the main pathways and mechanisms of lipid oxidation, factors affectinglipid oxidation, strategies to improve the stability of lipid oxidation, and the recent research progress of lipidoxidation in food science and nutritional health.
基金Supported by a grant for young researcher from Ministry of Public Health of P.R.C.
文摘The main purpose of this study was to investigate the protective actions of captopril and cicaprost on changes of membrane fluidity of cultured neonatal rat myocardial cells exposed to anoxia and sugar deprivation.Lipid peroxidation level estimated by determining the thiobarbituric acid reactive substance(TBARS)content and lactate dehydrogenase(LDH)released in culture medium was also observed in order to examine other membrane-related changes due to anoxia.Membrane fluidity was monitored by measuring changes in the steady state fluorescence anisotropy(r_s)by fluorescence spectroscopy.The r_s value,TBARS level and LDH release were significantly increased after 3 h anoxia.Captopril(180 μmol/L),cicaprost(30 nmol/L)and indomethacin(1μmol/L)did not alter r_s, TBARS level and LDH activity of normal cultured neonatal rat myocardial cells.However,both captopril and cicaprost significantly prevented the increases of r_s,TBARS content and LDH release in those cells exposed to anoxia and sugar deprivation.lndomethacin abolished the actions of captopril on TBARS production and LDH release,but maintained its membrane fluidity protection.These results indicate that captopril and cicaprost protect membrane fluidity and lipid peroxidation changes in anoxia- injured myocardial cells.The action mechanism of captopril may be due,in part,to stimulation of prostacyclin synthesis and/or release.
文摘[Objective] This study was conducted to evaluate the effect of 1-methylcy- clopropene (1-MCP) on fruit firmness, and the activity of the enzymes involved in ethylene metabolism and membrane lipid peroxidation. [Method] The nearly ripe fruits of the papaya cultivar Risheng were randomly assigned to one of four groups. Two groups were treated under hypobaric and hypoxic (HH) atmosphere condition for six hours, and immediately soaked in deionized water (HH alone), or fumigated with 2.0 mg/L 1-MCP (HH+I-MCP) for 24 h. The other two groups untreated under HH condition were also soaked in deionized water (negative control), or fumigated with 2.0 mg/L 1-MCP (1-MCP alone) for 24 h. After that, the fruits of all the four treatments were stored at room temperature (23+1) ℃. Cell membrane permeability, fruit firmness, respiration rate, ethylene release rate, SOD activity, POD activity, CAT activity, MAD content and LOX activity were measured once every three days during storage. [Result] Treatment with 1-MCP delayed the occurrence of the peaks of respiration rate and ethylene release rate, significantly reduced the accumulation of malondialdehyde (MDA), and inhibited the decrease in papaya fruit firmness. Compared with the control, 1-MCP treatment significantly increased the SOD (su- peroxide dismutase), POD (peroxidase) and CAT (catalase) activity, reduced the ac- tivity of lipoxygenase (LOX), a product of lipid peroxidatlon in membranes, and in- hibited ethylene biosynthesis, thus delaying the aging process and prolonging the storage life of papaya fruits. [Conclusion] The results will provide a theoretical basis for analvzina the key factors controllinq postharvest maturity and aging of papaya fruits.
文摘Currently,there is a lack of effective medicines capable of halting or reve rsing the progression of neurodegenerative disorde rs,including amyotrophic lateral sclerosis,Parkinson s disease,multiple sclerosis,or Alzheimer s disease.Given the unmet medical need,it is necessary to reevaluate the existing para digms of how to to rget these diseases.When considering neurodegenerative diseases from a systemic neurometabolic perspective,it becomes possible to explain the shared pathological features.This innovative approach presented in this paper draws upon exte nsive research conducted by the authors and researchers worldwide.In this review,we highlight the importance of metabolic mitochondrial dysfunction in the context of neurodegenerative diseases.We provide an overview of the risk factors associated with developing neurodegenerative disorders,including genetic,epigenetic,and environmental fa ctors.Additionally,we examine pathological mechanisms implicated in these diseases such as oxidative stress,accumulation of misfolded proteins,inflammation,demyelination,death of neurons,insulin resistance,dysbiosis,and neurotransmitter disturbances.Finally,we outline a proposal for the restoration of mitochondrial metabolism,a crucial aspect that may hold the key to facilitating curative therapeutic interventions for neurodegenerative disorders in forthcoming advancements.
文摘The mechanisms by which breviscapine (Bre) inhibits the lipid preoxidation in rat brain mitochondria were investigated. The mitochondrial lipid peroxidation of rat brain induced by oxygen free radical was measured by thiobarbituric acid spectrophotometry. The chelating activities of Bre for Fe 2+ were tested by differential spectrum. Superoxide anion (O 2)from xanthine xanthine oxidase (Xan XO) system and hydroxyl radical (·OH) from FeSO 4 H 2O 2 system were determined with spectrophotometry. It was found that Bre could effectively inhibit the lipid peroxidation of brain mitochondria induced by free radicals driven from Xan XO and FeSO 4 H 2O 2 system. The IC 50 of Bre were 93 01 μmol·L -1 for Xan XO system and 62 18 μmol·L -1 for FeSO 4 H 2O 2 system. Bre also scavenged O 2 and ·OH produced by Xan XO and FeSO 4 H 2O 2 systems. The IC 50 of Bre were 32 63 μmol·L -1 for O - 2 and 20 22 μmol·L -1 for ·OH. Furthermore, the chelating Fe 2+ activity of Bre was shown. It may be concluded that Bre inhibited lipid peroxidation at different stages of the reaction of oxygen free redial with the mitochondria membrane: (1) the formation of ·OH; (2) the initiation of the lipid peroxidation, by chelating Fe 2+ and scavenging O 2 as well as ·OH. The scavenging oxygen free radicals and chelating iron are the mechanisms of inhibitory effect of Bre on lipid peroxidation.
文摘Aim: To examine the effects of melatonin treatment on lipid peroxidation (LPO) and the activities of antioxidant enzymes in the testicular tissue of streptozotocin (STZ)-induced diabetic rats. Methods: Twenty-six male rats were randomly divided into three groups as follows: group Ⅰ, control, non-diabetic rats (n = 9); group Ⅱ, STZ-induced, untreated diabetic rats (n = 8); group Ⅲ, STZ-induced, melatonin-treated (dose of 10 mg/kg·day) diabetic rats (n = 9). Following 8-week melatonin treatment, all rats were anaesthetized and then were killed to remove testes from the scrotum. Results: As compared to group Ⅰ, in rat testicular tissues of grouap Ⅱ, increased levels of malondialdehyde (MDA) (P 〈 0.01) and superoxide dismutase (SOD) (P 〈 0.01) as well as, decreased levels of catalase (CAT) (P 〈 0.01) and glutathione peroxidase (GSH-Px) (P 〉 0.05) were found. In contrast, as compared to group Ⅱ, in rat testicular tissues of group Ⅲ, levels of MDA decreased (but this decrease was not significant, P 〉 0.05) and SOD (P 〈 0.01) as well as CAT (P 〈 0.05) increased. GSH-Px was not influenced by any of the treatment. Melatonin did not significantly affect the elevated glucose concentration of diabetic group. At the end of the study, there was no significant difference between the melatonin-treated group and the untreated group by means of body and testicular weight. Conclusion: Diabetes mellitus increases oxidative stress and melatonin inhibits lipid peroxidation and might regulate the activities of antioxidant enzymes of diabetic rat testes.
文摘Objective:To investigate the ability of the methanolic extract of pineapple peel to modulate alcohol-induced lipid peroxidation,changes in catalase activities and hepatic biochemical marker levels in blood plasma.Methods:Oxidative stress was induced by oral administration of ethanol(20%w/v) at a dosage of 5 niL/kg bw in rats.After 28 days of treatment,the rats were fasted overnight and sacrificed by cervical dislocation.Blood was collected with a 2 mL syringe by cardiac puncture and was centrifuged at 3000 rpm for 10 min.The plasma was analyzed to evaluate malondialdehyde(MDA),catalase activity,aspartate aminotransferase(AST),alkaline phosphatase(ALP) and alanine aminotransferase(ALT) concentrations.Results:Administration of alcohol caused a drastic increase(87.74%) in MDA level compared with the control.Pineapple peel extract significantly reduced the MDA level by 60.16%at 2.S mL/kg bw.Rats fed alcohol only had the highest catalase activity,treatment with pineapple peel extract at 2.5 mL/kg bw however, reduced the activity.Increased AST,ALP and ALT activities were observed in rats fed alcohol only respectively,treatment with pineapple peel extract drastically reduced their activities. Conclusions:The positive modulation of lipid peroxidation,catalase activities as well as hepatic biomarker levels of blood plasma by the methanolic extract of pineapple peels under alcoholinduced oxidative stress is an indication of its protective ability in the management of alcoholinduced toxicity.