Au-nanoparticles (size about 2 nm, but not 5 or 15 nm) are capable of effectively incorporating into quasinematic layers of particles of cholesteric liquid-crystalline dispersion formed by double-stranded nucleic acid...Au-nanoparticles (size about 2 nm, but not 5 or 15 nm) are capable of effectively incorporating into quasinematic layers of particles of cholesteric liquid-crystalline dispersion formed by double-stranded nucleic acid molecules of various families (DNA and poly(I)xpoly(C)). This Au-size-dependent process is accompanied by a decrease in amplitudes of abnormal bands in the CD spectra specific to initial cholesteric liquid-crystalline dispersions and simultaneously by an appearance of plasmon resonance band in visible absorption spectrum. The study of properties of particles of cholesteric liquid-crystalline dispersion treated with Au-nanoparticles by means of various physico-chemical methods demonstrates that incorporation of Au-nanoparticles into quasinematic layers of these particles results in two effects: i) it facilitates reorganization of the spatial cholesteric structure of particles, and ii) it induces the formation of Au-clusters in the content of particles. It is not excluded that these effects represent a possible reason for genotoxicity of Au-nanopar- ticles.展开更多
The use of lipid nanocarriers for drug delivery applications is an active research area,and a great interest has particularly been shown in the past two decades.Among different lipid nanocarriers,ISAsomes(Internally s...The use of lipid nanocarriers for drug delivery applications is an active research area,and a great interest has particularly been shown in the past two decades.Among different lipid nanocarriers,ISAsomes(Internally self-assembled somes or particles),including cubosomes and hexosomes,and solid lipid nanoparticles(SLNs)have unique structural features,making them attractive as nanocarriers for drug delivery.In this contribution,we focus exclusively on recent advances in formation and characterization of ISAsomes,mainly cubosomes and hexosomes,and their use as versatile nanocarriers for different drug delivery applications.Additionally,the advantages of SLNs and their application in oral and pulmonary drug delivery are discussed with focus on the biological fates of these lipid nanocarriers in vivo.Despite the demonstrated advantages in in vitro and in vivo evaluations including preclinical studies,further investigations on improved understanding of the interactions of these nanoparticles with biological fuids and tissues of the target sites is necessary for effcient designing of drug nanocarriers and exploring potential clinical applications.展开更多
1 Results Control of dispersion in synthesized nano-size powders is crucial to the realization of nanoparticles application,such as the fabrication of functional nano-strucured bodies.Dispersion of plasma-synthesized ...1 Results Control of dispersion in synthesized nano-size powders is crucial to the realization of nanoparticles application,such as the fabrication of functional nano-strucured bodies.Dispersion of plasma-synthesized TiO2 nanoparticles,which are formed in-flight in the high temperature thermal plasma,should be superior to those prepared by ordinal wet processes,as the particles have no surface residual groups.RF thermal plasma is characterized by extremely high temperatures,and rapid heating and cooling...展开更多
文摘Au-nanoparticles (size about 2 nm, but not 5 or 15 nm) are capable of effectively incorporating into quasinematic layers of particles of cholesteric liquid-crystalline dispersion formed by double-stranded nucleic acid molecules of various families (DNA and poly(I)xpoly(C)). This Au-size-dependent process is accompanied by a decrease in amplitudes of abnormal bands in the CD spectra specific to initial cholesteric liquid-crystalline dispersions and simultaneously by an appearance of plasmon resonance band in visible absorption spectrum. The study of properties of particles of cholesteric liquid-crystalline dispersion treated with Au-nanoparticles by means of various physico-chemical methods demonstrates that incorporation of Au-nanoparticles into quasinematic layers of these particles results in two effects: i) it facilitates reorganization of the spatial cholesteric structure of particles, and ii) it induces the formation of Au-clusters in the content of particles. It is not excluded that these effects represent a possible reason for genotoxicity of Au-nanopar- ticles.
基金Financial support to Anan Yaghmur for studies on development of drug nanocarriers based on cubosomes and hexosomes by the Danish Council for Independent Research|Technology and Production Sciences(references 1335-00150b and DFF-7017-00065,Denmark)。
文摘The use of lipid nanocarriers for drug delivery applications is an active research area,and a great interest has particularly been shown in the past two decades.Among different lipid nanocarriers,ISAsomes(Internally self-assembled somes or particles),including cubosomes and hexosomes,and solid lipid nanoparticles(SLNs)have unique structural features,making them attractive as nanocarriers for drug delivery.In this contribution,we focus exclusively on recent advances in formation and characterization of ISAsomes,mainly cubosomes and hexosomes,and their use as versatile nanocarriers for different drug delivery applications.Additionally,the advantages of SLNs and their application in oral and pulmonary drug delivery are discussed with focus on the biological fates of these lipid nanocarriers in vivo.Despite the demonstrated advantages in in vitro and in vivo evaluations including preclinical studies,further investigations on improved understanding of the interactions of these nanoparticles with biological fuids and tissues of the target sites is necessary for effcient designing of drug nanocarriers and exploring potential clinical applications.
文摘1 Results Control of dispersion in synthesized nano-size powders is crucial to the realization of nanoparticles application,such as the fabrication of functional nano-strucured bodies.Dispersion of plasma-synthesized TiO2 nanoparticles,which are formed in-flight in the high temperature thermal plasma,should be superior to those prepared by ordinal wet processes,as the particles have no surface residual groups.RF thermal plasma is characterized by extremely high temperatures,and rapid heating and cooling...