The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific consideration...The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific considerations and limitations. One way to decrease undesirable effects of sodic waters on the physical and chemical properties of soils is to apply organic and chemical amendments within the soil. This study aimed to assess the effectiveness of saline water on soil acidity, alkalinity and nutrients leaching in sandy loamy soil at Bella flower farm, in Rwamagana District, Rwanda. The water used was from the Muhazi Lake which is classified as Class I (Saline water quality). Column leaching experiments using treated soils were then conducted under saturated conditions. The soil under experimental was first analyzed for its textural classification, soil properties and is classified as sandy loamy soil. The t-test was taken at 1%, 5% and 10% levels of statistical significance compared to control soil. The results indicated that the application of saline water to soils caused an increase in some soil nutrients like increase of Phosphorus (P), Potassium (K<sup>+</sup>), Magnesium (Mg2<sup>+</sup>), Sulphur (S), CN ratio and Sodium (Na<sup>+</sup>) and decreased soil texture, physical and chemical properties and remained soil nutrients. Consequently, the intensive addition of saline water leachates to soil in PVC pipes led to decreased of soil EC through leaching and a raiser Soluble Sodium Percentage (SSP). The rate of saline water application affected the increase accumulation of SAR and Na% in the top soil layers. The study indicated that saline water is an inefficient amendment for sandy soil with saline water irrigation. The study recommends further studies with similar topic with saline water irrigation, as it accentuated the alkalinity levels.展开更多
Yolk-shell SiO2 particles(YP)with center-radial meso-channels were fabricated through a simple and effective method.Al-containing YP-supported NiMo catalysts with different Al amounts(NiMo/AYP-x,x=Si/Al molar proporti...Yolk-shell SiO2 particles(YP)with center-radial meso-channels were fabricated through a simple and effective method.Al-containing YP-supported NiMo catalysts with different Al amounts(NiMo/AYP-x,x=Si/Al molar proportion)were prepared and dibenzothiophene(DBT)and 4,6-dimethyl-dibenzothiophene(4,6-DMDBT)were employed as the probes to evaluate the hydrodesulfurization(HDS)catalytic performance.The as-prepared AYP-x carriers and corresponding catalysts were characterized by some advanced characterizations to obtain deeper correlations between physicochemical properties and the HDS performance.The average pore sizes of series AYP-x supports are above 6.0 nm,which favors the mass transfer of organic sulfides.The cavity between the yolk and the shell is beneficial for the enrichment of S-containing compounds and the accessibility between reactants and active metals.Aluminum embedded into the silica framework could facilitate the formation of Lewis(L)and Brønsted(B)acid sites and adjust the metal-support interaction(MSI).Among all the as-synthesized catalysts,NiMo/AYP-20 catalyst shows the highest HDS activities.The improved HDS activity of NiMo/AYP-20 catalyst is attributed to the perfect combination of excellent structural properties of the yolk-shell mesoporous silica,enhanced acidity,moderate MSI,and good accessibility/dispersion of active components.展开更多
Based on the criteria for additional surface acidity generation in composite oxides and composite fluorides proposed by Tanabe and Kemnitz et al.A hypothesis for the origin of additional surface acidity in solid compo...Based on the criteria for additional surface acidity generation in composite oxides and composite fluorides proposed by Tanabe and Kemnitz et al.A hypothesis for the origin of additional surface acidity in solid composites with the same metal cations is proposed.The surface acidsites of We analyze three types of solid composite systems,that is,CrF_(3)/Cr_(2)O_(3),MgF_(2)/MgO,and ZnF_(2)/ZnO,is systematically analyzed,which agrees with experimental results.Accordingly,the origin of additional surface acidity in these solid composites is reasonably explained,and the types of acidic sites are also predicted.展开更多
The acidity characteristics of acid sulphate soils of Kuttanad, Kerala, were studied in detail by collecting surface, profile and subsurface soil samples from 20 locations of six soil series viz., Ambalapuzha, Purakka...The acidity characteristics of acid sulphate soils of Kuttanad, Kerala, were studied in detail by collecting surface, profile and subsurface soil samples from 20 locations of six soil series viz., Ambalapuzha, Purakkad, Thotapally, Thuravur, Kallara and - Thakazhi that belonged to acid sulphate soils. The soils were extremely acidic showing a range of pH (H:O) varying from 2.5 to 5.2. Lowest pH was recorded by Thakazhi series and the highest by Thotapally. The potential acidity of soils ranged from 14.71 cmol.kg-1 to 110.5 cmol-kg1 with Thakazhi series showing the highest value. The contribution of hydrolytic acidity to potential acidity ranged from 70.2% to 97.2%. In all soil series, exchangeable A13+ was greater than exchangeable H~. A significant correlation was observed among pH (KCI), pH (H20) and pH (CaCI2) in all series.展开更多
An extremely acidified acid sulfate soil (ASS) was investigated to characterize its soluble and exchangeableacidity. The results showed that soluble acidity of a sample determined by titration with a KOH solutionwas m...An extremely acidified acid sulfate soil (ASS) was investigated to characterize its soluble and exchangeableacidity. The results showed that soluble acidity of a sample determined by titration with a KOH solutionwas much significantly greater than that indicated by pH measured using a PH meter, particularly for theextremely acidic soil samples. This is because the total soluble acidity of the extremely acidic soil sampleswas mainly composed of various soluble Al and Fe species, possibly in forms of Al sulfate complexes (e.g.,AISO4) and ferrous Fe (Fe2+). It is therefore suggested not to use pH alone as an indicator of soluble acidityin ASS, particularly for extremely acidic ASS. It is also likely that AISO4+ actively pericipated in cationexchange reactions. It appears that the possible involvement of this Al sulfate canon in the canon adsorptionhas significant effect on increasing the amount of acidity being adsorbed by the soils.展开更多
Two acidic carbon materials (H-PRC and HS-C) were used as catalysts for the condensation reaction of methanol with formaldehyde to produce dimethoxymethane (DMM) in aqueous solution (hydrophilic system) and for ...Two acidic carbon materials (H-PRC and HS-C) were used as catalysts for the condensation reaction of methanol with formaldehyde to produce dimethoxymethane (DMM) in aqueous solution (hydrophilic system) and for the etherification of isopentene with methanol to produce tert amyl methyl ether (TAME) in toluene solution (lipophilic system). Microcalorimetric adsorptions of water and benzene showed that the HS-C was highly hydrophilic without the lipophilicity, while the H-PRC exhibited both the hydrophilicity and lipophilicity. Thus, the HS-C was well dispersed in aqueous solution and difficult to separate from it. On the other hand, the H-PRC was highly active, more active than the acidic resin (D008) and sulfuric acid, for the synthesis of DMM in aqueous solution. The H-PRC was also highly active, more active than the HS-C, for the etherification of isopentene with methanol to produce TAME in toluene solution, probably owing to its amphiphilic surface property as well as its strong surface acidity as measured by the microcalorirnetric adsorption of NH3.展开更多
The coking kinetics and reaction-regeneration on Zn/HZSM-5 (Zn/HZ) catalyst in the conversion of methanol to aromatics were investigated. The highest initial benzene, toluene and xylene (BTX) yield of ca. 67.7% wa...The coking kinetics and reaction-regeneration on Zn/HZSM-5 (Zn/HZ) catalyst in the conversion of methanol to aromatics were investigated. The highest initial benzene, toluene and xylene (BTX) yield of ca. 67.7% was obtained on fresh Zn/HZ catalyst, which showed the worst catalytic stability. The cycle of reaction-regeneration significantly modified the texture and acidity of Zn/HZ catalyst, which in turn affected its catalytic performance and coking behavior in methanol conversion to BTX. The residual carbon located on the surface of Zn/HZ catalyst led to the decrease of acid sites and the change on the acid sites distribution, which played an important roles on its activity and deactivation. It was found that the high B/L ratio and the low total acid sites concentration of the Zn/HZ catalyst favored to the high BTX yield and good catalytic stability in methanol conversion.展开更多
Extensive acidic soils,which suffer from accelerated soil acidification,are found in southern China.Soil acidity,aluminum toxicity,and nutrient deficiencies severely limited crop productivity in acidic soils.It has be...Extensive acidic soils,which suffer from accelerated soil acidification,are found in southern China.Soil acidity,aluminum toxicity,and nutrient deficiencies severely limited crop productivity in acidic soils.It has been widely reported that crop residue biochars can ameliorate acidic soils and increase crop productivity.Here,we summarized the positive effects and mechanisms involved in the correction of soil acidity,the alleviation of aluminum toxicity and the increase of soil pH buffering capacity by crop residue biochars.The carbonate,oxygen-containing functional groups and silicates in biochars are the major components responsible for their efficacy in amending acidic soils and resisting soil re-acidification.We conclude that application of crop residue biochars may be a better option than traditional liming to ameliorate acidic soils.Nonetheless,further researches into soil acidification are still required to address some issues that are controversial and poorly understood.展开更多
The effects of rare earth(RE)on the structure,acidity,and catalytic performance of HZSM-5 zeolite were investigated.A series of RE/HZSM-5 catalysts,containing 7.54% RE(RE=La,Ce,Pr,Nd,Sm,Eu or Gd),were prepared by ...The effects of rare earth(RE)on the structure,acidity,and catalytic performance of HZSM-5 zeolite were investigated.A series of RE/HZSM-5 catalysts,containing 7.54% RE(RE=La,Ce,Pr,Nd,Sm,Eu or Gd),were prepared by the impregnation of the ZSM-5 type zeolites(Si/Al=64:1)with the corresponding RE nitrate aqueous solutions.The catalysts were characterized by means of FT-IR,UV-Vis,NH3-TPD,and IR spectroscopy of adsorbed pyridine.The catalytic performances of the RE/HZSM-5 for the catalytic cracking of mixed butane to light olefins were also measured with a fixed bed microreactor.The results revealed that the addition of light rare earth metal on the HZSM-5 catalyst greatly enhanced the selectivity to olefins,especially to propylene,thus increasing the total yield of olefins in the catalytic cracking of butane.Among the RE-modified HZSM-5 samples,Ce/HZSM-5 gave the highest yield of total olefins,and Nd/HZSM-5 gave the highest yield of propene at a reaction temperature of 600℃.The presence of rare earth metal on the HZSM-5 sample,not only modified the acidic properties of HZSM-5 including the amount of acid sites and acid type,that is,the ratio of L/B(Lewis acid/Brnsted acid),but also altered the basic properties of it,which in turn promoted the catalytic performance of HZSM-5 for the catalytic cracking of butane.展开更多
The chemical compositions of the dichloromethane extracts of inner and outer barks from six Pinus species(P.elliotii,P.oocarpa,P.caribeae,P.merkusii,P.montezumae,and P.insularis) grown in Indonesia were investigated...The chemical compositions of the dichloromethane extracts of inner and outer barks from six Pinus species(P.elliotii,P.oocarpa,P.caribeae,P.merkusii,P.montezumae,and P.insularis) grown in Indonesia were investigated by GC and GC–MS.Generally,the amounts of extractive contents were higher in the inner bark than in the outer bark except for P.merksuii.Fatty acids,monoterpenes,sesquiterpenes,resin acids,triterpenoids,and steroids were detected and quantified.Inner and outer barks differed not only in content of these compounds but also in their composition.Fatty acids and alcohols were the major classes of lipophilic compounds in the outer bark of P.caribeae, P.insularis,and P.montezumae.Steroids and triterpenoids were the dominant compounds identified in the inner bark of P.elliotii,P.insularis,and P.merkusii.Resin acids were the most abundant group in the inner bark of P.oocarpa whereas monoterpenes and sesquiterpenes were recorded in minor quantities in both bark layers of all species.展开更多
The surface acidity of synthetic amorphous AI hydroxide was determined by acid/base titration with several complementary methods including solution analyses of the reacted solutions and XRD characterization of the rea...The surface acidity of synthetic amorphous AI hydroxide was determined by acid/base titration with several complementary methods including solution analyses of the reacted solutions and XRD characterization of the reacted solids. The synthetic specimen was characterized to be the amorphous material showing four broad peaks in XRD pattern. XRD analyses of reacted solids after the titration experiments showed that amorphous AI hydroxide rapidly transformed to crystalline bayerite at the alkaline condition (pH〉10). The solution analyses after and during the titration Ksp=^aAl^3+/aH^+^3 ,was 10^10.3. The amount of consumption of added acid or base during the titration experiment was attributed to both the protonation/deprotonation of dissolved AI species and surface hydroxyl group. The surface acidity constants, surface hydroxyl density and specific surface area were estimated by FITEQL 4.0.展开更多
Mesoporous silicoaluminum pillared clays have been synthesized by one-potgallery-templated synthesis using organomontmorillonite, tetraethyl orthosilicate and aluminaisopropoxide as precursor. According to the charact...Mesoporous silicoaluminum pillared clays have been synthesized by one-potgallery-templated synthesis using organomontmorillonite, tetraethyl orthosilicate and aluminaisopropoxide as precursor. According to the characterization by powder X-ray diffraction(PXRD), thermogravimetric analysis (TGA), N2 adsorption isotherms and pyridine adsorptioninfrared (IR) techniques, the synthetic silicoaluminum pillared clays possess regular porosity withhigh thermal stability up to 750 ℃ and Br?nsted /Lewis acidity.展开更多
Olefin alkylation of thiophenic sulfur process was carried out in model gasoline, using Hβ zeolites with different Si/Al2 ratios as catalysts. In particular, the influence of acid properties of Hβ zeolites on its ca...Olefin alkylation of thiophenic sulfur process was carried out in model gasoline, using Hβ zeolites with different Si/Al2 ratios as catalysts. In particular, the influence of acid properties of Hβ zeolites on its catalytic ability for the thiophene alkylation, xylene alkylation and hexene oligomerization was investigated. The results showed that the acidity of the Hβ zeolite was increased with the decrease of Si/Al2 ratio, but its catalytic ability was not always increased. In fact, it reached the maximal catalytic ability at Si/Al2 ratio of 66, and under the reaction conditions of 60 ℃, 1.5 MPa, WHSV 3.0 h^-1 and time on stream 2 h. At the ratio, the conversion of thiophene, xylene, and oligomerized hexene were 96.6%, 2.7% and 2.8%, respectively. An optimal Si/Al2 ratio exists for the catalytic performance of Hβ zeolite. By investigating the coke deposition of the used Hβ zeolite catalysts, it has been found that the optimal Si/Al2 ratio is attributed to the combined effect of the carbocation activation capability and the hydrogen transformation capability of the Hβ zeolite catalyst.展开更多
AIM: To search the independent factors determining gastric juice acidity and to investigate the acidity of gastric juices in various benign and malignant upper gastrointestinal diseases. METHODS: Fasting gastric juice...AIM: To search the independent factors determining gastric juice acidity and to investigate the acidity of gastric juices in various benign and malignant upper gastrointestinal diseases. METHODS: Fasting gastric juice acidity of 165 healthysubjects and 346 patients with esophageal ulcer (n = 21), gastric ulcer (n = 136), duodenal ulcer (n = 100) or gastric cancer (n = 89) were measured and compared. Additionally, gastric specimens were taken from the antrum and body for rapid urease test and histological examination. RESULTS: Multivariate analysis revealed that bile stain of gastric juice, high acute inflammatory score of the corpus, and atrophy of the corpus were independent risk factors for the development of gastric hypoacidity with odds ratios of 3.1 (95% CI: 1.3-7.3), 3.1 (95% CI: 1.2-7.9) and 3.5 (95% CI: 1.3-9.2). Esophageal ulcer and duodenal ulcer patients had a lower pH level (1.9 and 2.1 vs 2.9, both P < 0.05) of gastric juices than healthy subjects. In contrast, gastric ulcer and gastric cancer patients had a higher pH level (3.4 and 6.6 vs 2.9, both P < 0.001) than healthy controls. Hypoacidity existed in 22%, 5%, 29%, 5% and 88% of healthy subjects, esophageal ulcer, gastric ulcer, duodenal ulcer and gastric cancer patients, respectively. CONCLUSION: Bile reflux, atrophy and dense neutrophil infiltrate of the corpus are three independent factors determining the acidity of gastric juice.展开更多
Direct catalytic propane dehydrogenation(PDH)to obtain propylene is a more economical and environmentally friendly route for propylene production.In particular,alumina-supported Cr2O3 catalysts can have better potenti...Direct catalytic propane dehydrogenation(PDH)to obtain propylene is a more economical and environmentally friendly route for propylene production.In particular,alumina-supported Cr2O3 catalysts can have better potential applications if the acidic properties could be tuned.Herein,a series of rod-shaped porous alumina were prepared through a hydrothermal route,followed by calcination.It was found that the acidity of the synthesized alumina was generally lower than that of the commercial alumina and could be adjusted well by varying the calcination temperature.Such alumina materials were used as supports for active Cr2O3,and the obtained catalysts could enhance the resistance to coke formation associated with similar activity in PDH reaction compared to the commercial alumina.The amount of coke deposited on a self-made catalyst(Cr-Al-800)was 3.6%,which was much lower than that deposited on the reference catalyst(15.7%).The lower acidity of the catalyst inhibited the side reactions and coke formation during the PDH process,which was beneficial for its high activity and superior anti-coking properties.展开更多
The sorption of a triazol derivative, 1-(4-chlorophenyl)- 4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)penten-3-ol with a common name of S3307D, on fifteen soils and three H_2O_2-treated soils was investigated. The sorption ...The sorption of a triazol derivative, 1-(4-chlorophenyl)- 4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)penten-3-ol with a common name of S3307D, on fifteen soils and three H_2O_2-treated soils was investigated. The sorption isotherm for each untreated and treated soil was non-linear, and was best fitted to Freundlich sorption equation. Soils containing high amount of clay content or organic matter or both sorbed much higher amounts of the chemical than soils that had low contents of these soil constituents. H_2O_2-treated soils showed considerable sorptive affinity for S3307D. It was concluded that both organic matter and mineral fraction in natural soils contributed to the sorption of the basic compound. Sorption by the H_2O_2 treated soils increased as suspension pH decreased, but all suspension pHs exceeded the pKa of the compound by more than two units. This implies that organic base protonation can occur on surfaces of soil components, and surface acidity (exchangeable acidity ) is important in sorption process of the organic base rather than suspension pH.展开更多
Objective: To determine hydrophilic–lipophilic balance(HLB) value, stability of formulate emulsion and properties of sacha inchi oil.Methods: The physiochemical characteristics of sacha inchi oil were first investiga...Objective: To determine hydrophilic–lipophilic balance(HLB) value, stability of formulate emulsion and properties of sacha inchi oil.Methods: The physiochemical characteristics of sacha inchi oil were first investigated.Free radical scavenging property was studied by DPPH assay. HLB value of sacha inchi oil was experimentally determined by preparing the emulsion using emulsifiers at different HLB value. Sacha inchi oil emulsion was prepared using the obtained HLB and its stability was conducted by centrifugation, temperature cycling, and accelerated stability test. The efficiency of the prepared emulsion was clinically investigated by 15 volunteers. The primary skin irritation was performed using closed patch test. Subjective sensory assessment was evaluated by using 5-point hedonic scale method.Results: Peroxide value of sacha inchi oil was 18.40 meq O2/kg oil and acid value was1.86 KOH/g oil. The major fatty acids are omega-3(44%), omega-6(35%) and omega-9(9%). The vitamin E content was 226 mg/100 g oil. Moreover, sacha inchi oil(167 ppm)and its emulsion showed 85% and 89% DPPH inhibition, respectively. The experimental HLB value of sacha inchi oil was 8.5. The sacha inchi oil emulsion exhibited good stability after stability test. The emulsion was classified as non-irritant after tested by primary skin irritation method. The skin hydration value significantly increased from38.59 to 45.21(P < 0.05) after applying sacha inchi oil emulsion for 1 month and the overall product satisfaction of volunteers after use was with score of 4.2.Conclusions: This work provides information on HLB value and emulsion properties of sacha inchi oil which is useful for cosmetic and pharmaceutical application.展开更多
Co–Mo catalysts applied on the hydrodesulfurization(HDS) for FCC gasoline were prepared with Zn–Al layered double hydroxides(LDHs) to improve their performances,and the effects of pore structures and acidity on ...Co–Mo catalysts applied on the hydrodesulfurization(HDS) for FCC gasoline were prepared with Zn–Al layered double hydroxides(LDHs) to improve their performances,and the effects of pore structures and acidity on HDS performances were studied in detail. A series of Zn–Al/LDHs samples with different pore structures and acidities are synthesized on the bases of co-precipitation of OH-,CO2-,Al3+,and Zn2+. The neutralization p H is a main factor to affect the pore structures and acidity of Zn–Al/LDHs,and a series of Zn–Al/LDHs with different pore structures and acidities are obtained. Based on the representative samples with different specific surface areas(SBET) and acidities,three Co Mo/LDHs catalysts were prepared,and their HDS performances were compared with traditional Co Mo/Al2O3 catalysts. The results indicated that catalysts prepared with high SBETpossessed high HDS activity,and Br?nsted acid sites could reduce the thiol content in the product to some extent. All the three catalysts prepared with LDHs displayed little lower HDS activity but higher selectivity than Co Mo/Al2O3,and could restrain the reactions of re-combination between olefin and H2 S which could be due to the existence of Br?nsted acid sites.展开更多
A 45-day greenhouse experiment was carried out to determine effect of vesicular-arbuscular (VA) mycorrhizal fungi on colonization rate, plant height, plant growth, hyphae length, total Al in the plants, exchangeable A...A 45-day greenhouse experiment was carried out to determine effect of vesicular-arbuscular (VA) mycorrhizal fungi on colonization rate, plant height, plant growth, hyphae length, total Al in the plants, exchangeable Al in the soil and soil pH by comparison at soil pH 3.5, 4.5 and 6.0. Plant mung bean (Phaseolus radiatus L.) and crotalaria (Crotalaria mucronata Desv.) were grown with and without VA mycorrhizal fungi in pots with red soil. Ten VA mycorrhizal fungi strains were tested, including Glomus epigaeum (No. 90001), Glomus caledonium (No. 90036), Glomus mosseae (No. 90107), Acaulospora spp. (No. 34), Scutellospora heterogama (No. 36), Scutellospora calospora (No. 37), Glomus manihotis (No. 38), Gigaspora spp. (No. 47), Glomus manihotis (No. 49), and Acaulospora spp. (No. 53). Being the most tolerant to acidity, strain 34 and strain 38 showed quicker and higher-rated colonization without lagging, three to four times more in number of nodules, two to four times more in plant dry weight, 30% to 60% more in hyphae length, lower soil exchangeable Al, and higher soil pH than without VA mycorrhizal fungi (CK). Other strains also could improve plant growth and enhance plant tolerance to acidity, but their effects were not marked. This indicated that VA mycorrhizal fungi differed in the tolerance to soil acidity and so did their inoculation effects. In the experiment, acidic soil could be remedied by inoculation of promising VA mycorrhizal fungi tolerant of acidity.展开更多
文摘The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific considerations and limitations. One way to decrease undesirable effects of sodic waters on the physical and chemical properties of soils is to apply organic and chemical amendments within the soil. This study aimed to assess the effectiveness of saline water on soil acidity, alkalinity and nutrients leaching in sandy loamy soil at Bella flower farm, in Rwamagana District, Rwanda. The water used was from the Muhazi Lake which is classified as Class I (Saline water quality). Column leaching experiments using treated soils were then conducted under saturated conditions. The soil under experimental was first analyzed for its textural classification, soil properties and is classified as sandy loamy soil. The t-test was taken at 1%, 5% and 10% levels of statistical significance compared to control soil. The results indicated that the application of saline water to soils caused an increase in some soil nutrients like increase of Phosphorus (P), Potassium (K<sup>+</sup>), Magnesium (Mg2<sup>+</sup>), Sulphur (S), CN ratio and Sodium (Na<sup>+</sup>) and decreased soil texture, physical and chemical properties and remained soil nutrients. Consequently, the intensive addition of saline water leachates to soil in PVC pipes led to decreased of soil EC through leaching and a raiser Soluble Sodium Percentage (SSP). The rate of saline water application affected the increase accumulation of SAR and Na% in the top soil layers. The study indicated that saline water is an inefficient amendment for sandy soil with saline water irrigation. The study recommends further studies with similar topic with saline water irrigation, as it accentuated the alkalinity levels.
基金The authors acknowledge the financial supports from the National Science Foundation of China(U1908204,91845201,and 22002093)the funds that Central Government Guides Local Science and Technology Development(2022JH6/100100052)Scientific Research Project of Education Department of Liaoning Province(LQN202006).
文摘Yolk-shell SiO2 particles(YP)with center-radial meso-channels were fabricated through a simple and effective method.Al-containing YP-supported NiMo catalysts with different Al amounts(NiMo/AYP-x,x=Si/Al molar proportion)were prepared and dibenzothiophene(DBT)and 4,6-dimethyl-dibenzothiophene(4,6-DMDBT)were employed as the probes to evaluate the hydrodesulfurization(HDS)catalytic performance.The as-prepared AYP-x carriers and corresponding catalysts were characterized by some advanced characterizations to obtain deeper correlations between physicochemical properties and the HDS performance.The average pore sizes of series AYP-x supports are above 6.0 nm,which favors the mass transfer of organic sulfides.The cavity between the yolk and the shell is beneficial for the enrichment of S-containing compounds and the accessibility between reactants and active metals.Aluminum embedded into the silica framework could facilitate the formation of Lewis(L)and Brønsted(B)acid sites and adjust the metal-support interaction(MSI).Among all the as-synthesized catalysts,NiMo/AYP-20 catalyst shows the highest HDS activities.The improved HDS activity of NiMo/AYP-20 catalyst is attributed to the perfect combination of excellent structural properties of the yolk-shell mesoporous silica,enhanced acidity,moderate MSI,and good accessibility/dispersion of active components.
基金The Key Research and Development Program of Zhejiang Province(2021C01003)National Natural Science Foundation of China(52025011,51971202,51872260 and 52171019)The Zhejiang Provincial Natural Science Foundation of China(LD19B030001,Z4080070 and LR23B030004)。
文摘Based on the criteria for additional surface acidity generation in composite oxides and composite fluorides proposed by Tanabe and Kemnitz et al.A hypothesis for the origin of additional surface acidity in solid composites with the same metal cations is proposed.The surface acidsites of We analyze three types of solid composite systems,that is,CrF_(3)/Cr_(2)O_(3),MgF_(2)/MgO,and ZnF_(2)/ZnO,is systematically analyzed,which agrees with experimental results.Accordingly,the origin of additional surface acidity in these solid composites is reasonably explained,and the types of acidic sites are also predicted.
文摘The acidity characteristics of acid sulphate soils of Kuttanad, Kerala, were studied in detail by collecting surface, profile and subsurface soil samples from 20 locations of six soil series viz., Ambalapuzha, Purakkad, Thotapally, Thuravur, Kallara and - Thakazhi that belonged to acid sulphate soils. The soils were extremely acidic showing a range of pH (H:O) varying from 2.5 to 5.2. Lowest pH was recorded by Thakazhi series and the highest by Thotapally. The potential acidity of soils ranged from 14.71 cmol.kg-1 to 110.5 cmol-kg1 with Thakazhi series showing the highest value. The contribution of hydrolytic acidity to potential acidity ranged from 70.2% to 97.2%. In all soil series, exchangeable A13+ was greater than exchangeable H~. A significant correlation was observed among pH (KCI), pH (H20) and pH (CaCI2) in all series.
文摘An extremely acidified acid sulfate soil (ASS) was investigated to characterize its soluble and exchangeableacidity. The results showed that soluble acidity of a sample determined by titration with a KOH solutionwas much significantly greater than that indicated by pH measured using a PH meter, particularly for theextremely acidic soil samples. This is because the total soluble acidity of the extremely acidic soil sampleswas mainly composed of various soluble Al and Fe species, possibly in forms of Al sulfate complexes (e.g.,AISO4) and ferrous Fe (Fe2+). It is therefore suggested not to use pH alone as an indicator of soluble acidityin ASS, particularly for extremely acidic ASS. It is also likely that AISO4+ actively pericipated in cationexchange reactions. It appears that the possible involvement of this Al sulfate canon in the canon adsorptionhas significant effect on increasing the amount of acidity being adsorbed by the soils.
文摘Two acidic carbon materials (H-PRC and HS-C) were used as catalysts for the condensation reaction of methanol with formaldehyde to produce dimethoxymethane (DMM) in aqueous solution (hydrophilic system) and for the etherification of isopentene with methanol to produce tert amyl methyl ether (TAME) in toluene solution (lipophilic system). Microcalorimetric adsorptions of water and benzene showed that the HS-C was highly hydrophilic without the lipophilicity, while the H-PRC exhibited both the hydrophilicity and lipophilicity. Thus, the HS-C was well dispersed in aqueous solution and difficult to separate from it. On the other hand, the H-PRC was highly active, more active than the acidic resin (D008) and sulfuric acid, for the synthesis of DMM in aqueous solution. The H-PRC was also highly active, more active than the HS-C, for the etherification of isopentene with methanol to produce TAME in toluene solution, probably owing to its amphiphilic surface property as well as its strong surface acidity as measured by the microcalorirnetric adsorption of NH3.
基金supported by the National Ministry of Education(NCET-10-878)Shaanxi"13115"Innovation Project(2009ZDKJ-70)Shaanxi Key Innovation Project(2011ZKC4-08)
文摘The coking kinetics and reaction-regeneration on Zn/HZSM-5 (Zn/HZ) catalyst in the conversion of methanol to aromatics were investigated. The highest initial benzene, toluene and xylene (BTX) yield of ca. 67.7% was obtained on fresh Zn/HZ catalyst, which showed the worst catalytic stability. The cycle of reaction-regeneration significantly modified the texture and acidity of Zn/HZ catalyst, which in turn affected its catalytic performance and coking behavior in methanol conversion to BTX. The residual carbon located on the surface of Zn/HZ catalyst led to the decrease of acid sites and the change on the acid sites distribution, which played an important roles on its activity and deactivation. It was found that the high B/L ratio and the low total acid sites concentration of the Zn/HZ catalyst favored to the high BTX yield and good catalytic stability in methanol conversion.
基金funded by the National Key Research and Development of China(2016YFD0200302)the National Key Basic Research Program of China(2014CB441003)
文摘Extensive acidic soils,which suffer from accelerated soil acidification,are found in southern China.Soil acidity,aluminum toxicity,and nutrient deficiencies severely limited crop productivity in acidic soils.It has been widely reported that crop residue biochars can ameliorate acidic soils and increase crop productivity.Here,we summarized the positive effects and mechanisms involved in the correction of soil acidity,the alleviation of aluminum toxicity and the increase of soil pH buffering capacity by crop residue biochars.The carbonate,oxygen-containing functional groups and silicates in biochars are the major components responsible for their efficacy in amending acidic soils and resisting soil re-acidification.We conclude that application of crop residue biochars may be a better option than traditional liming to ameliorate acidic soils.Nonetheless,further researches into soil acidification are still required to address some issues that are controversial and poorly understood.
基金Project supported by the National Basic Research Program of China(2004CB2178062005CB221402)+1 种基金the National NaturalScience Foundation of China(20373043)Young Scientists Innovation Foundation of CNPC(04E7025)
文摘The effects of rare earth(RE)on the structure,acidity,and catalytic performance of HZSM-5 zeolite were investigated.A series of RE/HZSM-5 catalysts,containing 7.54% RE(RE=La,Ce,Pr,Nd,Sm,Eu or Gd),were prepared by the impregnation of the ZSM-5 type zeolites(Si/Al=64:1)with the corresponding RE nitrate aqueous solutions.The catalysts were characterized by means of FT-IR,UV-Vis,NH3-TPD,and IR spectroscopy of adsorbed pyridine.The catalytic performances of the RE/HZSM-5 for the catalytic cracking of mixed butane to light olefins were also measured with a fixed bed microreactor.The results revealed that the addition of light rare earth metal on the HZSM-5 catalyst greatly enhanced the selectivity to olefins,especially to propylene,thus increasing the total yield of olefins in the catalytic cracking of butane.Among the RE-modified HZSM-5 samples,Ce/HZSM-5 gave the highest yield of total olefins,and Nd/HZSM-5 gave the highest yield of propene at a reaction temperature of 600℃.The presence of rare earth metal on the HZSM-5 sample,not only modified the acidic properties of HZSM-5 including the amount of acid sites and acid type,that is,the ratio of L/B(Lewis acid/Brnsted acid),but also altered the basic properties of it,which in turn promoted the catalytic performance of HZSM-5 for the catalytic cracking of butane.
基金supported by JASSO(Japan Student Services Organization)DPP Grant 2016(Faculty of Forestry,UGM)
文摘The chemical compositions of the dichloromethane extracts of inner and outer barks from six Pinus species(P.elliotii,P.oocarpa,P.caribeae,P.merkusii,P.montezumae,and P.insularis) grown in Indonesia were investigated by GC and GC–MS.Generally,the amounts of extractive contents were higher in the inner bark than in the outer bark except for P.merksuii.Fatty acids,monoterpenes,sesquiterpenes,resin acids,triterpenoids,and steroids were detected and quantified.Inner and outer barks differed not only in content of these compounds but also in their composition.Fatty acids and alcohols were the major classes of lipophilic compounds in the outer bark of P.caribeae, P.insularis,and P.montezumae.Steroids and triterpenoids were the dominant compounds identified in the inner bark of P.elliotii,P.insularis,and P.merkusii.Resin acids were the most abundant group in the inner bark of P.oocarpa whereas monoterpenes and sesquiterpenes were recorded in minor quantities in both bark layers of all species.
文摘The surface acidity of synthetic amorphous AI hydroxide was determined by acid/base titration with several complementary methods including solution analyses of the reacted solutions and XRD characterization of the reacted solids. The synthetic specimen was characterized to be the amorphous material showing four broad peaks in XRD pattern. XRD analyses of reacted solids after the titration experiments showed that amorphous AI hydroxide rapidly transformed to crystalline bayerite at the alkaline condition (pH〉10). The solution analyses after and during the titration Ksp=^aAl^3+/aH^+^3 ,was 10^10.3. The amount of consumption of added acid or base during the titration experiment was attributed to both the protonation/deprotonation of dissolved AI species and surface hydroxyl group. The surface acidity constants, surface hydroxyl density and specific surface area were estimated by FITEQL 4.0.
基金Fund supported by the National Natural Science Foundation of China(No.20376075)Zhejiang Provincial Natural Science Foundation(No.201057)are acknowledged.
文摘Mesoporous silicoaluminum pillared clays have been synthesized by one-potgallery-templated synthesis using organomontmorillonite, tetraethyl orthosilicate and aluminaisopropoxide as precursor. According to the characterization by powder X-ray diffraction(PXRD), thermogravimetric analysis (TGA), N2 adsorption isotherms and pyridine adsorptioninfrared (IR) techniques, the synthetic silicoaluminum pillared clays possess regular porosity withhigh thermal stability up to 750 ℃ and Br?nsted /Lewis acidity.
基金the National 973 Project of China(No.2005CB221403)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant:DICP K2007D3)
文摘Olefin alkylation of thiophenic sulfur process was carried out in model gasoline, using Hβ zeolites with different Si/Al2 ratios as catalysts. In particular, the influence of acid properties of Hβ zeolites on its catalytic ability for the thiophene alkylation, xylene alkylation and hexene oligomerization was investigated. The results showed that the acidity of the Hβ zeolite was increased with the decrease of Si/Al2 ratio, but its catalytic ability was not always increased. In fact, it reached the maximal catalytic ability at Si/Al2 ratio of 66, and under the reaction conditions of 60 ℃, 1.5 MPa, WHSV 3.0 h^-1 and time on stream 2 h. At the ratio, the conversion of thiophene, xylene, and oligomerized hexene were 96.6%, 2.7% and 2.8%, respectively. An optimal Si/Al2 ratio exists for the catalytic performance of Hβ zeolite. By investigating the coke deposition of the used Hβ zeolite catalysts, it has been found that the optimal Si/Al2 ratio is attributed to the combined effect of the carbocation activation capability and the hydrogen transformation capability of the Hβ zeolite catalyst.
基金Supported by Research grant NSC-96-2314-B-075B-009 from the National Science Council, Taiwan
文摘AIM: To search the independent factors determining gastric juice acidity and to investigate the acidity of gastric juices in various benign and malignant upper gastrointestinal diseases. METHODS: Fasting gastric juice acidity of 165 healthysubjects and 346 patients with esophageal ulcer (n = 21), gastric ulcer (n = 136), duodenal ulcer (n = 100) or gastric cancer (n = 89) were measured and compared. Additionally, gastric specimens were taken from the antrum and body for rapid urease test and histological examination. RESULTS: Multivariate analysis revealed that bile stain of gastric juice, high acute inflammatory score of the corpus, and atrophy of the corpus were independent risk factors for the development of gastric hypoacidity with odds ratios of 3.1 (95% CI: 1.3-7.3), 3.1 (95% CI: 1.2-7.9) and 3.5 (95% CI: 1.3-9.2). Esophageal ulcer and duodenal ulcer patients had a lower pH level (1.9 and 2.1 vs 2.9, both P < 0.05) of gastric juices than healthy subjects. In contrast, gastric ulcer and gastric cancer patients had a higher pH level (3.4 and 6.6 vs 2.9, both P < 0.001) than healthy controls. Hypoacidity existed in 22%, 5%, 29%, 5% and 88% of healthy subjects, esophageal ulcer, gastric ulcer, duodenal ulcer and gastric cancer patients, respectively. CONCLUSION: Bile reflux, atrophy and dense neutrophil infiltrate of the corpus are three independent factors determining the acidity of gastric juice.
基金supported by the National Natural Science Foundation of China(21733002)Joint Sino-German Research Project(2161101168)Cheung Kong Scholars Program of China(T2015036)~~
文摘Direct catalytic propane dehydrogenation(PDH)to obtain propylene is a more economical and environmentally friendly route for propylene production.In particular,alumina-supported Cr2O3 catalysts can have better potential applications if the acidic properties could be tuned.Herein,a series of rod-shaped porous alumina were prepared through a hydrothermal route,followed by calcination.It was found that the acidity of the synthesized alumina was generally lower than that of the commercial alumina and could be adjusted well by varying the calcination temperature.Such alumina materials were used as supports for active Cr2O3,and the obtained catalysts could enhance the resistance to coke formation associated with similar activity in PDH reaction compared to the commercial alumina.The amount of coke deposited on a self-made catalyst(Cr-Al-800)was 3.6%,which was much lower than that deposited on the reference catalyst(15.7%).The lower acidity of the catalyst inhibited the side reactions and coke formation during the PDH process,which was beneficial for its high activity and superior anti-coking properties.
文摘The sorption of a triazol derivative, 1-(4-chlorophenyl)- 4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)penten-3-ol with a common name of S3307D, on fifteen soils and three H_2O_2-treated soils was investigated. The sorption isotherm for each untreated and treated soil was non-linear, and was best fitted to Freundlich sorption equation. Soils containing high amount of clay content or organic matter or both sorbed much higher amounts of the chemical than soils that had low contents of these soil constituents. H_2O_2-treated soils showed considerable sorptive affinity for S3307D. It was concluded that both organic matter and mineral fraction in natural soils contributed to the sorption of the basic compound. Sorption by the H_2O_2 treated soils increased as suspension pH decreased, but all suspension pHs exceeded the pKa of the compound by more than two units. This implies that organic base protonation can occur on surfaces of soil components, and surface acidity (exchangeable acidity ) is important in sorption process of the organic base rather than suspension pH.
文摘Objective: To determine hydrophilic–lipophilic balance(HLB) value, stability of formulate emulsion and properties of sacha inchi oil.Methods: The physiochemical characteristics of sacha inchi oil were first investigated.Free radical scavenging property was studied by DPPH assay. HLB value of sacha inchi oil was experimentally determined by preparing the emulsion using emulsifiers at different HLB value. Sacha inchi oil emulsion was prepared using the obtained HLB and its stability was conducted by centrifugation, temperature cycling, and accelerated stability test. The efficiency of the prepared emulsion was clinically investigated by 15 volunteers. The primary skin irritation was performed using closed patch test. Subjective sensory assessment was evaluated by using 5-point hedonic scale method.Results: Peroxide value of sacha inchi oil was 18.40 meq O2/kg oil and acid value was1.86 KOH/g oil. The major fatty acids are omega-3(44%), omega-6(35%) and omega-9(9%). The vitamin E content was 226 mg/100 g oil. Moreover, sacha inchi oil(167 ppm)and its emulsion showed 85% and 89% DPPH inhibition, respectively. The experimental HLB value of sacha inchi oil was 8.5. The sacha inchi oil emulsion exhibited good stability after stability test. The emulsion was classified as non-irritant after tested by primary skin irritation method. The skin hydration value significantly increased from38.59 to 45.21(P < 0.05) after applying sacha inchi oil emulsion for 1 month and the overall product satisfaction of volunteers after use was with score of 4.2.Conclusions: This work provides information on HLB value and emulsion properties of sacha inchi oil which is useful for cosmetic and pharmaceutical application.
文摘Co–Mo catalysts applied on the hydrodesulfurization(HDS) for FCC gasoline were prepared with Zn–Al layered double hydroxides(LDHs) to improve their performances,and the effects of pore structures and acidity on HDS performances were studied in detail. A series of Zn–Al/LDHs samples with different pore structures and acidities are synthesized on the bases of co-precipitation of OH-,CO2-,Al3+,and Zn2+. The neutralization p H is a main factor to affect the pore structures and acidity of Zn–Al/LDHs,and a series of Zn–Al/LDHs with different pore structures and acidities are obtained. Based on the representative samples with different specific surface areas(SBET) and acidities,three Co Mo/LDHs catalysts were prepared,and their HDS performances were compared with traditional Co Mo/Al2O3 catalysts. The results indicated that catalysts prepared with high SBETpossessed high HDS activity,and Br?nsted acid sites could reduce the thiol content in the product to some extent. All the three catalysts prepared with LDHs displayed little lower HDS activity but higher selectivity than Co Mo/Al2O3,and could restrain the reactions of re-combination between olefin and H2 S which could be due to the existence of Br?nsted acid sites.
基金Project (No. G1999011807) supported by the National Key Basic Research and Development Programme of China
文摘A 45-day greenhouse experiment was carried out to determine effect of vesicular-arbuscular (VA) mycorrhizal fungi on colonization rate, plant height, plant growth, hyphae length, total Al in the plants, exchangeable Al in the soil and soil pH by comparison at soil pH 3.5, 4.5 and 6.0. Plant mung bean (Phaseolus radiatus L.) and crotalaria (Crotalaria mucronata Desv.) were grown with and without VA mycorrhizal fungi in pots with red soil. Ten VA mycorrhizal fungi strains were tested, including Glomus epigaeum (No. 90001), Glomus caledonium (No. 90036), Glomus mosseae (No. 90107), Acaulospora spp. (No. 34), Scutellospora heterogama (No. 36), Scutellospora calospora (No. 37), Glomus manihotis (No. 38), Gigaspora spp. (No. 47), Glomus manihotis (No. 49), and Acaulospora spp. (No. 53). Being the most tolerant to acidity, strain 34 and strain 38 showed quicker and higher-rated colonization without lagging, three to four times more in number of nodules, two to four times more in plant dry weight, 30% to 60% more in hyphae length, lower soil exchangeable Al, and higher soil pH than without VA mycorrhizal fungi (CK). Other strains also could improve plant growth and enhance plant tolerance to acidity, but their effects were not marked. This indicated that VA mycorrhizal fungi differed in the tolerance to soil acidity and so did their inoculation effects. In the experiment, acidic soil could be remedied by inoculation of promising VA mycorrhizal fungi tolerant of acidity.