Hepatitis C virus(HCV) infects over 150 million people worldwide. In most cases, HCV infection becomes chronic causing liver disease ranging from fibrosis to cirrhosis and hepatocellular carcinoma. Viral persistence a...Hepatitis C virus(HCV) infects over 150 million people worldwide. In most cases, HCV infection becomes chronic causing liver disease ranging from fibrosis to cirrhosis and hepatocellular carcinoma. Viral persistence and pathogenesis are due to the ability of HCV to deregulate specific host processes, mainly lipid metabolism and innate immunity. In particular, HCV exploits the lipoprotein machineries for almost all steps of its life cycle. The aim of this review is to summarize current knowledge concerning the interplay between HCV and lipoprotein metabolism. We discuss the role played by members of lipoproteins in HCV entry, replication and virion production.展开更多
Mouse peritoneal macrophages (MPM) were incubated with ApoEpoor VLDL or ApoE-rich VLDL at same concentrations for 24 h. The ApoE mR NA content increased in both groups than that in control and the highest ApoEmRNA con...Mouse peritoneal macrophages (MPM) were incubated with ApoEpoor VLDL or ApoE-rich VLDL at same concentrations for 24 h. The ApoE mR NA content increased in both groups than that in control and the highest ApoEmRNA content was seen in MPM incubated with ApoE-poor VLDL. The results suggest that VLDL could stimuIate ApoE gene expression in MPM and the ApoE poor VLDL has more pronounced effect. We think that the ApoE secreted byMPM may be incorporated into VLDL, especially the ApoE-poor VLDL, and thereby enhance the uptake of those lipoproteins by MPM or other local cells via ApoE-mediated receptor pathways.展开更多
High-density lipoproteins (HDLs) have been well established to protect against the development of atherosclerotic cardiovascular disease. It has become apparent that in addition to the promotion of reverse cholester...High-density lipoproteins (HDLs) have been well established to protect against the development of atherosclerotic cardiovascular disease. It has become apparent that in addition to the promotion of reverse cholesterol transport, HDLs possess a number of additional functional properties that may contribute to their beneficial influence on the arterial wall. A number of exciting therapeutic strategies have been developed that target HDL and its ability to protect against the development of atherosclerotic plaque. This paper will review how the promotion of the functional properties of HDL inhibits the formation of atherosclerotic plaque and stabilises lesions in patients with established disease.展开更多
Patients with type 2 diabetes mellitus(T2DM) frequently exhibit macrovascular complications of atherosclerotic cardiovascular(CV) disease. High density lipoproteins(HDL) are protective against atherosclerosis. Low lev...Patients with type 2 diabetes mellitus(T2DM) frequently exhibit macrovascular complications of atherosclerotic cardiovascular(CV) disease. High density lipoproteins(HDL) are protective against atherosclerosis. Low levels of HDL cholesterol(HDL-C) independently contribute to CV risk. Patients with T2 DM not only exhibit low HDL-C, but also dysfunctional HDL. Furthermore, low concentration of HDL may increase the risk for the development of T2 DM through a decreased β cell survival and secretory function. In this paper, we discuss emerging concepts in the relationship of T2 DM with HDL.展开更多
Liver plays a vital role in the production and catabolism of plasma lipoproteins. It depends on the integrity of cellular function of liver, which ensures homeostasis of lipid and lipoprotein metabolism. When liver ca...Liver plays a vital role in the production and catabolism of plasma lipoproteins. It depends on the integrity of cellular function of liver, which ensures homeostasis of lipid and lipoprotein metabolism. When liver cancer occurs these processes are impaired and high-density lipoproteins are changed.展开更多
1 INTRODUCTION It’s evident that high level of cholesterol in blood is associated with the formation and devel-opment of familial hypercholestrolemia(FH)and atherosclerosis(AS).In general,choles-terol in blood is mai...1 INTRODUCTION It’s evident that high level of cholesterol in blood is associated with the formation and devel-opment of familial hypercholestrolemia(FH)and atherosclerosis(AS).In general,choles-terol in blood is mainly combined with low-density lipoproteins(LDL),very low-densitylipoproteins(VLDL)and high density lipoproteins(HDL).About 60%-80% cholesterolexists in LDL and VLDL.LDL and VLDL have been recognized as the principal展开更多
An extender has been developed with low-density lipoproteins (LDLs) that eliminates the microbial risks associated with the use of whole egg yolk. The objective of this study was to assess the effects of substitutin...An extender has been developed with low-density lipoproteins (LDLs) that eliminates the microbial risks associated with the use of whole egg yolk. The objective of this study was to assess the effects of substituting egg yolk with LDLs for use as an extender in sperm preservation at 4 ℃, as well as on spermatozoa motility, plasma membrane and acrosome integrity, at two different concentrations (80×10^6 and 240× 10^6 sperm per ml) for 8 days and to evaluate glycerol toxicity in both extenders. A total of 12 ejaculates were collected from three bulls. Spermatozoa motility was examined using computer-assisted semen analysis. Plasma membrane integrity was determined using the hypo-osmotic swelling test and acrosome integrity with the fluorescein isothiocyanate-Pisum sativum agglutinin test. The semen was subsequently divided into four aliquots and diluted with Tris-egg yolk-glycerol (TEG), Tris-egg yolk without glycerol (TE), LDL with glycerol (LDL+) and LDL without glycerol (LDL-), at 80×10^6 and 240 ×10^6sperm per ml. This study showed that the LDL+ and LDL- extenders were more effective at preserving spermatozoa motility, plasma membrane integrity and acrosome integrity than TEG and TE (P〈0.05) during 8 days of incubation. After 3 days of incubation, a toxicity of glycerol was observed in TEG, whereas no significant difference was observed between LDL+ and LDL-. We can therefore conclude that the LDL extender can be used to refrigerate semen at 4 ~C instead of TEG and TE at 80×10^6and 240×10^6 sperm per ml for elite bulls. This finding can be used to define a policy for the storage of high-quality bull semen.展开更多
AIM:To evaluate the direct binding of two main chlamydial biovars(C.trachomatis and C.pneumoniae) to plasma lipoproteins and its effect on chlamydial infection rate in human hepatoma cell line(HepG2 cells). METHODS:Mu...AIM:To evaluate the direct binding of two main chlamydial biovars(C.trachomatis and C.pneumoniae) to plasma lipoproteins and its effect on chlamydial infection rate in human hepatoma cell line(HepG2 cells). METHODS:Murine plasma lipoproteins were fractionated and isolated using fast-performance liquid chromatography(FPLC),spotted on nitrocellulose membrane and incubated with chlamydial suspensions. Direct binding of chlamydial particles to lipoprotein fractions has been studied using lipopolysaccharide-specific antibodies in immuno-dot blot binding assay and immunoprecipitation analysis.Immunostaining protocol as well as flow cytometry analysis have been employed to study the infectivity rate of chlamydial species in HepG2 cells. RESULTS:Elementary bodies of both C.trachomatis and C.pneumoniae bind ApoB-containing fractions of plasma lipoproteins.That binding becomes stronger when heat-denatured FPLC fractions are used, suggesting a primary role of apolipoproteins in interaction between chlamydial particle and lipoprotein. Both chlamydial biovars efficiently propagate in human hepatoma cell line-HepG2 cells even in serum free conditions forming late-stage inclusion bodies and releasing extracellular elementary bodies.Preincubation of C.trachomatis and C.pneumoniae with native ApoB-containing lipoproteins enhances the rate of chlamydial infection in HepG2 cells.CONCLUSION:A productive infection caused by C. trachomatis and C.pneumoniae may take place in human-derived hepatocytes revealing hepatic cells as possible target in chlamydial infection.Obtained results may suggest the participation of lipoprotein receptors in the mechanism of attachment and/or entry of chlamydial particles into target cells.展开更多
Background. The effects of physical exercises combined with a low-calorie diet on weight loss, body composition, lipoproteins profile, and physical fitness had been well described. However, Central Africa’s studies i...Background. The effects of physical exercises combined with a low-calorie diet on weight loss, body composition, lipoproteins profile, and physical fitness had been well described. However, Central Africa’s studies investigating these kinds of diets and exercise regimens are lacking. Objective. To investigate the effects of adding 14-weeks exercises to a hypocaloric diet on changes in body composition, lipoproteins concentrations, and physical capacities in obese Congolese women. Population and Methods. In total, 34 obese women aged 30 - 39 years (mean age: 33.7 ± 2.4 years) assigned to 14-weeks training program and low energy ketogenic diet. Body composition was assessed using classic methods and impedancemetry. Fasting plasma glucose (FPG) and fasting serum insulin were assessing using enzymatic colorimetric and radioim-munoradiometric methods. HOMA-IR and lipoproteins concentrations were assessed using standardized laboratory methods. VO2peak was measured on a treadmill during a progressive exercise test. Speed, cadence and stride length were measured along the 10-m level walkway. Muscular endurance was measured using the tests of sit-up and inflections-extensions of elbows. All the variables of the study were assessed at the beginning, in the 7-weeks, and in the 14-weeks of training methods. Results. Declines in body weight (16%), percent fat (12.1%), fat weight (26.4%), abdominal fat (34.2%), and waist circumference (10.4%) were found. A significant decrease in FPG (13%), fasting serum insulin (60.9%), HOMA-IR (64.7%), total cholesterol (12.2%), LDL-cholesterol (20.3%), triglycerides (92.8%), and VLDL-triglycerides (17.5%) was shown. In contrast, significant increase in HDL-cholesterol (27.13%) was found. The peak oxygen consumption VO2peak relative to body weight improved more in the 14-weeks training program (13.4%). Obese women exhibited higher values in the 14-weeks training program for speed gait (16.5%), cadence (9.1%), and stride length (15.7%) during normal walk and rapid walk. Weight loss combined with a low-calorie diet and 14-weeks training program improved significantly muscular endurance capacities. Conclusion. Exercise added to hypocaloric diet leads to decreases in body composition, to improve in insulin sensitivity, to enhancement of VO2peak and functional fitness. This may be helpful for the treatment of the metabolic complications of abdominal obesity.展开更多
Biological nanotechnologies have provided considerable opportunities in the management of malignancies with delicate design and negligible toxicity,from preventive and diagnostic to therapeutic fields.Lipoproteins,bec...Biological nanotechnologies have provided considerable opportunities in the management of malignancies with delicate design and negligible toxicity,from preventive and diagnostic to therapeutic fields.Lipoproteins,because of their inherent blood-brain barrier permeability and lesion-homing capability,have been identified as promising strategies for high-performance theranostics of brain diseases.However,the application of natural lipoproteins remains limited owing to insufficient accumulation and complex purification processes,which can be critical for individual therapeutics and clinical translation.To address these issues,lipoprotein-inspired nano drug-delivery systems(nano-DDSs),which have been learned from nature,have been fabricated to achieve synergistic drug delivery involving site-specific accumulation and tractable preparation with versatile physicochemical functions.In this review,the barriers in brain disease treatment,advantages of state-of-the-art lipoprotein-inspired nano-DDSs,and bio-interactions of such nano-DDSs are highlighted.Furthermore,the characteristics and advanced applications of natural lipoproteins and tailor-made lipoprotein-inspired nano-DDSs are summarized.Specifically,the key designs and current applications of lipoprotein-inspired nano-DDSs in the field of brain disease therapy are intensively discussed.Finally,the current challenges and future perspectives in the field of lipoprotein-inspired nano-DDSs combined with other vehicles,such as exosomes,cell membranes,and bacteria,are discussed.展开更多
The role of very low density lipoprotein receptor (LVLDR) in the process of foam cell formation was investigated. After the primary cultured mouse peritoneal macrophages were incubated with VLDL, β VLDL or low densi...The role of very low density lipoprotein receptor (LVLDR) in the process of foam cell formation was investigated. After the primary cultured mouse peritoneal macrophages were incubated with VLDL, β VLDL or low density lipoprotein (LDL), respectively for 24 h and 48 h, foam cells formation was identified by oil red O staining and cellular contents of triglyceride (TG) and total cholesterol (TC) were determined. The mRNA levels of LDLR, LDLR related protein (LRP) and VLDLR were detected by semi quantitative RT PCR. The results demonstrated that VLDL, β VLDL and LDL could increase the contents of TG and TC in macrophages. Cells treated with VLDL or β VLDL showed markedly increased expression of VLDLR and decreased expression of LDLR, whereas LRP was up regulated slightly. For identifying the effect of VLDL receptor on cellular lipid accumulation, ldl A7 VR cells, which expresses VLDLR and trace amount of LRP without functional LDLR, was used to incubate with lipoproteins for further examination. The results elucidated that the uptake of triglyceride rich lipoprotein mediated by VLDLR plays an important role in accumulation of lipid and the formation of foam cells.展开更多
To elucidate the intracellular signaling pathways for VLDL-induced VLDLR transcription, Western blot analysis was used to examine phosphorylated ERK1/2 protein. It was found that that VLDL induced an increase in ERK1/...To elucidate the intracellular signaling pathways for VLDL-induced VLDLR transcription, Western blot analysis was used to examine phosphorylated ERK1/2 protein. It was found that that VLDL induced an increase in ERK1/2 activity in a protein kinase C (PKC)-dependent manner in murine RAW264. 7 macrophages. By using different protein kinases inhibitors or activators it was observed that the effect of VLDL-induced VLDL receptor transcription, which is monitored by RT-PCR analysis of VLDL receptor mRNA, was not affected by the inhibitor of p38 kinase and cAMP analog, but completely abolished by pretreatment of the cells with PD 98059, an inhibitor of MEK and GF 109203X, an inhibitor of PKC. These results demonstrated that the PKC/ERK1/2 cascade is the essential signaling pathway by which VLDL activates VLDL receptor mRNA expression.展开更多
This study examined the effect of insulin on the expression of very low density lipoprotein receptor (VLDLR) subtypes of SGC7901 cells and discussed its biological implication.In vitro, moderately or poorly-differenti...This study examined the effect of insulin on the expression of very low density lipoprotein receptor (VLDLR) subtypes of SGC7901 cells and discussed its biological implication.In vitro, moderately or poorly-differentiated human gastric adenocarcinoma cell line SGC7901 was incubated with insulin for different lengths of time, and then the expression of protein and RNA level in VLDLR subtypes were detected by Western blotting and real-time PCR, respectively.The results showed that, at certain time interval, insulin could down-regulate expression of type Ⅰ VLDLR and up-regulate the expression of type Ⅱ VLDLR in SGC7901 cells, at both protein and RNA level.We are led to conclude that insulin serves as a regulator in maintaining the balance between glucose and lipid metabolism in vivo, possibly through its effect on the differential expression of VLDLR subtypes.展开更多
The purpose of this clinical trial was to delineate some of the negative consequences of high BMI on health and explore the possibility of a solution. We analysed the blood test results of nine overweight adults with ...The purpose of this clinical trial was to delineate some of the negative consequences of high BMI on health and explore the possibility of a solution. We analysed the blood test results of nine overweight adults with sedentary lifestyles, and an average BMI of 32.23. Results revealed a statistically significant reduction of visceral adipose tissue, very-low density lipoprotein (VLDL), and triglycerides. Testosterone, leptin, IGF-1 and Free T3 increased within the normal range, juxtaposed by cortisol and ghrelin that declined, but without dipping into abnormality. These findings have important implications during the COVID-19 pandemic, where optimal immunity is deemed necessary in limiting susceptibility to the virus. Recent research indicates that weight gain often escalates vulnerability to respiratory track disturbances, cardiovascular disease (CVD) and diabetes. Consequently, pre-existing conditions increase COVID-19 mortality rates. CVD and diabetes emerge out of hormonal imbalances that involve Free T3, leptin, ghrelin, testosterone, and cortisol. Physical training is decidedly the most acclaimed solution, yet, the least implemented one, due to procrastination, or demoralization after investing constant exhaustive effort with no immediately visible physical change. COVID-19 confinement exacerbates the tendency for inactivity, and promotes stress-eating behaviours. Moreover, strenuous exercise, necessary for visceral fat reduction, results in a negative cortisol/testosterone relationship that provokes caloric consumption and inflammation. Offering an alternative to exercise that effectively improves health, boosts metabolism, and controls appetite, may serve as a proactive, and preventive method that can safeguard health.展开更多
Monocyte chemoattractant protein-1(MCP-1), a potent chemoattractant, is thought to play an important role in migration of monocytes into atherosclerotic lesions. The present study was designed to investigate the capac...Monocyte chemoattractant protein-1(MCP-1), a potent chemoattractant, is thought to play an important role in migration of monocytes into atherosclerotic lesions. The present study was designed to investigate the capacity of human peripheral blood monocytes to express MCP-1 and effects of native very low density lipoprotein (VLDL) and oxidized VLDL(OX-VLDL) on the expression. The total RNA was extracted from cultured monocytes, which were exposed to VLDL and OX-VLDL, and the media conditioned by monocytes were collected. MCP-1 mRNA expression was examined by Northern blot analysis. MCP-1 protein in conditioned media was determined by using sandwich ELISA. The results showed that monocytes can express MCP-1 after a 24 h incubation at 37℃,and the expression was markedly increased by a exposure to OX-VLDL, whereas the expression was slightly increased when exposed to VLDL. It suggests that the capacity of monocytes to produce MCP-1 that recruits and activates circulating monocytes may be of considerable importance in atherogenesis, and oxidation of VLDL enhances its potential to promote atherogenesis.展开更多
基金Supported by AIRC(to Tripodi MNo.IG-13529 to Fimia GM)+6 种基金Ministry for Health of Italy(“Ricerca Corrente”to Grassi GTripodi MAlonzi TFimia GM and Ippolito G“Ricerca Finalizzata”to Fimia GM and Ippolito G)Ministry of University and Research of Italy(PRIN to Tripodi MPh D program to Di Caprio G)
文摘Hepatitis C virus(HCV) infects over 150 million people worldwide. In most cases, HCV infection becomes chronic causing liver disease ranging from fibrosis to cirrhosis and hepatocellular carcinoma. Viral persistence and pathogenesis are due to the ability of HCV to deregulate specific host processes, mainly lipid metabolism and innate immunity. In particular, HCV exploits the lipoprotein machineries for almost all steps of its life cycle. The aim of this review is to summarize current knowledge concerning the interplay between HCV and lipoprotein metabolism. We discuss the role played by members of lipoproteins in HCV entry, replication and virion production.
文摘Mouse peritoneal macrophages (MPM) were incubated with ApoEpoor VLDL or ApoE-rich VLDL at same concentrations for 24 h. The ApoE mR NA content increased in both groups than that in control and the highest ApoEmRNA content was seen in MPM incubated with ApoE-poor VLDL. The results suggest that VLDL could stimuIate ApoE gene expression in MPM and the ApoE poor VLDL has more pronounced effect. We think that the ApoE secreted byMPM may be incorporated into VLDL, especially the ApoE-poor VLDL, and thereby enhance the uptake of those lipoproteins by MPM or other local cells via ApoE-mediated receptor pathways.
文摘High-density lipoproteins (HDLs) have been well established to protect against the development of atherosclerotic cardiovascular disease. It has become apparent that in addition to the promotion of reverse cholesterol transport, HDLs possess a number of additional functional properties that may contribute to their beneficial influence on the arterial wall. A number of exciting therapeutic strategies have been developed that target HDL and its ability to protect against the development of atherosclerotic plaque. This paper will review how the promotion of the functional properties of HDL inhibits the formation of atherosclerotic plaque and stabilises lesions in patients with established disease.
文摘Patients with type 2 diabetes mellitus(T2DM) frequently exhibit macrovascular complications of atherosclerotic cardiovascular(CV) disease. High density lipoproteins(HDL) are protective against atherosclerosis. Low levels of HDL cholesterol(HDL-C) independently contribute to CV risk. Patients with T2 DM not only exhibit low HDL-C, but also dysfunctional HDL. Furthermore, low concentration of HDL may increase the risk for the development of T2 DM through a decreased β cell survival and secretory function. In this paper, we discuss emerging concepts in the relationship of T2 DM with HDL.
文摘Liver plays a vital role in the production and catabolism of plasma lipoproteins. It depends on the integrity of cellular function of liver, which ensures homeostasis of lipid and lipoprotein metabolism. When liver cancer occurs these processes are impaired and high-density lipoproteins are changed.
文摘1 INTRODUCTION It’s evident that high level of cholesterol in blood is associated with the formation and devel-opment of familial hypercholestrolemia(FH)and atherosclerosis(AS).In general,choles-terol in blood is mainly combined with low-density lipoproteins(LDL),very low-densitylipoproteins(VLDL)and high density lipoproteins(HDL).About 60%-80% cholesterolexists in LDL and VLDL.LDL and VLDL have been recognized as the principal
文摘An extender has been developed with low-density lipoproteins (LDLs) that eliminates the microbial risks associated with the use of whole egg yolk. The objective of this study was to assess the effects of substituting egg yolk with LDLs for use as an extender in sperm preservation at 4 ℃, as well as on spermatozoa motility, plasma membrane and acrosome integrity, at two different concentrations (80×10^6 and 240× 10^6 sperm per ml) for 8 days and to evaluate glycerol toxicity in both extenders. A total of 12 ejaculates were collected from three bulls. Spermatozoa motility was examined using computer-assisted semen analysis. Plasma membrane integrity was determined using the hypo-osmotic swelling test and acrosome integrity with the fluorescein isothiocyanate-Pisum sativum agglutinin test. The semen was subsequently divided into four aliquots and diluted with Tris-egg yolk-glycerol (TEG), Tris-egg yolk without glycerol (TE), LDL with glycerol (LDL+) and LDL without glycerol (LDL-), at 80×10^6 and 240 ×10^6sperm per ml. This study showed that the LDL+ and LDL- extenders were more effective at preserving spermatozoa motility, plasma membrane integrity and acrosome integrity than TEG and TE (P〈0.05) during 8 days of incubation. After 3 days of incubation, a toxicity of glycerol was observed in TEG, whereas no significant difference was observed between LDL+ and LDL-. We can therefore conclude that the LDL extender can be used to refrigerate semen at 4 ~C instead of TEG and TE at 80×10^6and 240×10^6 sperm per ml for elite bulls. This finding can be used to define a policy for the storage of high-quality bull semen.
文摘AIM:To evaluate the direct binding of two main chlamydial biovars(C.trachomatis and C.pneumoniae) to plasma lipoproteins and its effect on chlamydial infection rate in human hepatoma cell line(HepG2 cells). METHODS:Murine plasma lipoproteins were fractionated and isolated using fast-performance liquid chromatography(FPLC),spotted on nitrocellulose membrane and incubated with chlamydial suspensions. Direct binding of chlamydial particles to lipoprotein fractions has been studied using lipopolysaccharide-specific antibodies in immuno-dot blot binding assay and immunoprecipitation analysis.Immunostaining protocol as well as flow cytometry analysis have been employed to study the infectivity rate of chlamydial species in HepG2 cells. RESULTS:Elementary bodies of both C.trachomatis and C.pneumoniae bind ApoB-containing fractions of plasma lipoproteins.That binding becomes stronger when heat-denatured FPLC fractions are used, suggesting a primary role of apolipoproteins in interaction between chlamydial particle and lipoprotein. Both chlamydial biovars efficiently propagate in human hepatoma cell line-HepG2 cells even in serum free conditions forming late-stage inclusion bodies and releasing extracellular elementary bodies.Preincubation of C.trachomatis and C.pneumoniae with native ApoB-containing lipoproteins enhances the rate of chlamydial infection in HepG2 cells.CONCLUSION:A productive infection caused by C. trachomatis and C.pneumoniae may take place in human-derived hepatocytes revealing hepatic cells as possible target in chlamydial infection.Obtained results may suggest the participation of lipoprotein receptors in the mechanism of attachment and/or entry of chlamydial particles into target cells.
文摘Background. The effects of physical exercises combined with a low-calorie diet on weight loss, body composition, lipoproteins profile, and physical fitness had been well described. However, Central Africa’s studies investigating these kinds of diets and exercise regimens are lacking. Objective. To investigate the effects of adding 14-weeks exercises to a hypocaloric diet on changes in body composition, lipoproteins concentrations, and physical capacities in obese Congolese women. Population and Methods. In total, 34 obese women aged 30 - 39 years (mean age: 33.7 ± 2.4 years) assigned to 14-weeks training program and low energy ketogenic diet. Body composition was assessed using classic methods and impedancemetry. Fasting plasma glucose (FPG) and fasting serum insulin were assessing using enzymatic colorimetric and radioim-munoradiometric methods. HOMA-IR and lipoproteins concentrations were assessed using standardized laboratory methods. VO2peak was measured on a treadmill during a progressive exercise test. Speed, cadence and stride length were measured along the 10-m level walkway. Muscular endurance was measured using the tests of sit-up and inflections-extensions of elbows. All the variables of the study were assessed at the beginning, in the 7-weeks, and in the 14-weeks of training methods. Results. Declines in body weight (16%), percent fat (12.1%), fat weight (26.4%), abdominal fat (34.2%), and waist circumference (10.4%) were found. A significant decrease in FPG (13%), fasting serum insulin (60.9%), HOMA-IR (64.7%), total cholesterol (12.2%), LDL-cholesterol (20.3%), triglycerides (92.8%), and VLDL-triglycerides (17.5%) was shown. In contrast, significant increase in HDL-cholesterol (27.13%) was found. The peak oxygen consumption VO2peak relative to body weight improved more in the 14-weeks training program (13.4%). Obese women exhibited higher values in the 14-weeks training program for speed gait (16.5%), cadence (9.1%), and stride length (15.7%) during normal walk and rapid walk. Weight loss combined with a low-calorie diet and 14-weeks training program improved significantly muscular endurance capacities. Conclusion. Exercise added to hypocaloric diet leads to decreases in body composition, to improve in insulin sensitivity, to enhancement of VO2peak and functional fitness. This may be helpful for the treatment of the metabolic complications of abdominal obesity.
基金financial support from the National Natural Science Foundation of China(No.82274104,82074024,82374042)the Open Project of Chinese Materia Medica FirstClass Discipline of Nanjing University of Chinese Medicine(No.2020YLXK019)Young Elite Scientists Sponsorship Program by CACM(No.2021-QNRC2-A01)
文摘Biological nanotechnologies have provided considerable opportunities in the management of malignancies with delicate design and negligible toxicity,from preventive and diagnostic to therapeutic fields.Lipoproteins,because of their inherent blood-brain barrier permeability and lesion-homing capability,have been identified as promising strategies for high-performance theranostics of brain diseases.However,the application of natural lipoproteins remains limited owing to insufficient accumulation and complex purification processes,which can be critical for individual therapeutics and clinical translation.To address these issues,lipoprotein-inspired nano drug-delivery systems(nano-DDSs),which have been learned from nature,have been fabricated to achieve synergistic drug delivery involving site-specific accumulation and tractable preparation with versatile physicochemical functions.In this review,the barriers in brain disease treatment,advantages of state-of-the-art lipoprotein-inspired nano-DDSs,and bio-interactions of such nano-DDSs are highlighted.Furthermore,the characteristics and advanced applications of natural lipoproteins and tailor-made lipoprotein-inspired nano-DDSs are summarized.Specifically,the key designs and current applications of lipoprotein-inspired nano-DDSs in the field of brain disease therapy are intensively discussed.Finally,the current challenges and future perspectives in the field of lipoprotein-inspired nano-DDSs combined with other vehicles,such as exosomes,cell membranes,and bacteria,are discussed.
文摘The role of very low density lipoprotein receptor (LVLDR) in the process of foam cell formation was investigated. After the primary cultured mouse peritoneal macrophages were incubated with VLDL, β VLDL or low density lipoprotein (LDL), respectively for 24 h and 48 h, foam cells formation was identified by oil red O staining and cellular contents of triglyceride (TG) and total cholesterol (TC) were determined. The mRNA levels of LDLR, LDLR related protein (LRP) and VLDLR were detected by semi quantitative RT PCR. The results demonstrated that VLDL, β VLDL and LDL could increase the contents of TG and TC in macrophages. Cells treated with VLDL or β VLDL showed markedly increased expression of VLDLR and decreased expression of LDLR, whereas LRP was up regulated slightly. For identifying the effect of VLDL receptor on cellular lipid accumulation, ldl A7 VR cells, which expresses VLDLR and trace amount of LRP without functional LDLR, was used to incubate with lipoproteins for further examination. The results elucidated that the uptake of triglyceride rich lipoprotein mediated by VLDLR plays an important role in accumulation of lipid and the formation of foam cells.
基金This project was supported by a grant from National Natural Sciences Foundation of China(Serial No.39970307).
文摘To elucidate the intracellular signaling pathways for VLDL-induced VLDLR transcription, Western blot analysis was used to examine phosphorylated ERK1/2 protein. It was found that that VLDL induced an increase in ERK1/2 activity in a protein kinase C (PKC)-dependent manner in murine RAW264. 7 macrophages. By using different protein kinases inhibitors or activators it was observed that the effect of VLDL-induced VLDL receptor transcription, which is monitored by RT-PCR analysis of VLDL receptor mRNA, was not affected by the inhibitor of p38 kinase and cAMP analog, but completely abolished by pretreatment of the cells with PD 98059, an inhibitor of MEK and GF 109203X, an inhibitor of PKC. These results demonstrated that the PKC/ERK1/2 cascade is the essential signaling pathway by which VLDL activates VLDL receptor mRNA expression.
基金supported by grants from National Natural Sciences Foundation of China (No.39970307)Hubei Provincial Natural Sciences Foundation of China (No.2005ABA092)
文摘This study examined the effect of insulin on the expression of very low density lipoprotein receptor (VLDLR) subtypes of SGC7901 cells and discussed its biological implication.In vitro, moderately or poorly-differentiated human gastric adenocarcinoma cell line SGC7901 was incubated with insulin for different lengths of time, and then the expression of protein and RNA level in VLDLR subtypes were detected by Western blotting and real-time PCR, respectively.The results showed that, at certain time interval, insulin could down-regulate expression of type Ⅰ VLDLR and up-regulate the expression of type Ⅱ VLDLR in SGC7901 cells, at both protein and RNA level.We are led to conclude that insulin serves as a regulator in maintaining the balance between glucose and lipid metabolism in vivo, possibly through its effect on the differential expression of VLDLR subtypes.
文摘The purpose of this clinical trial was to delineate some of the negative consequences of high BMI on health and explore the possibility of a solution. We analysed the blood test results of nine overweight adults with sedentary lifestyles, and an average BMI of 32.23. Results revealed a statistically significant reduction of visceral adipose tissue, very-low density lipoprotein (VLDL), and triglycerides. Testosterone, leptin, IGF-1 and Free T3 increased within the normal range, juxtaposed by cortisol and ghrelin that declined, but without dipping into abnormality. These findings have important implications during the COVID-19 pandemic, where optimal immunity is deemed necessary in limiting susceptibility to the virus. Recent research indicates that weight gain often escalates vulnerability to respiratory track disturbances, cardiovascular disease (CVD) and diabetes. Consequently, pre-existing conditions increase COVID-19 mortality rates. CVD and diabetes emerge out of hormonal imbalances that involve Free T3, leptin, ghrelin, testosterone, and cortisol. Physical training is decidedly the most acclaimed solution, yet, the least implemented one, due to procrastination, or demoralization after investing constant exhaustive effort with no immediately visible physical change. COVID-19 confinement exacerbates the tendency for inactivity, and promotes stress-eating behaviours. Moreover, strenuous exercise, necessary for visceral fat reduction, results in a negative cortisol/testosterone relationship that provokes caloric consumption and inflammation. Offering an alternative to exercise that effectively improves health, boosts metabolism, and controls appetite, may serve as a proactive, and preventive method that can safeguard health.
文摘Monocyte chemoattractant protein-1(MCP-1), a potent chemoattractant, is thought to play an important role in migration of monocytes into atherosclerotic lesions. The present study was designed to investigate the capacity of human peripheral blood monocytes to express MCP-1 and effects of native very low density lipoprotein (VLDL) and oxidized VLDL(OX-VLDL) on the expression. The total RNA was extracted from cultured monocytes, which were exposed to VLDL and OX-VLDL, and the media conditioned by monocytes were collected. MCP-1 mRNA expression was examined by Northern blot analysis. MCP-1 protein in conditioned media was determined by using sandwich ELISA. The results showed that monocytes can express MCP-1 after a 24 h incubation at 37℃,and the expression was markedly increased by a exposure to OX-VLDL, whereas the expression was slightly increased when exposed to VLDL. It suggests that the capacity of monocytes to produce MCP-1 that recruits and activates circulating monocytes may be of considerable importance in atherogenesis, and oxidation of VLDL enhances its potential to promote atherogenesis.