In this paper, we establish the boundedness of commutators generated by the multilinear Calderon- Zygmud type singular integrals and Lipschitz functions on the Triebel-Lizorkin space and Lipschitz spaces.
In this paper,we develop the truncated Euler-Maruyama(EM)method for stochastic differential equations with piecewise continuous arguments(SDEPCAs),and consider the strong convergence theory under the local Lipschitz c...In this paper,we develop the truncated Euler-Maruyama(EM)method for stochastic differential equations with piecewise continuous arguments(SDEPCAs),and consider the strong convergence theory under the local Lipschitz condition plus the Khasminskii-type condition.The order of convergence is obtained.Moreover,we show that the truncated EM method can preserve the exponential mean square stability of SDEPCAs.Numerical examples are provided to support our conclusions.展开更多
基金Supported by the National Natural Science Foundation of China(No.11161042,11271175)
文摘In this paper, we establish the boundedness of commutators generated by the multilinear Calderon- Zygmud type singular integrals and Lipschitz functions on the Triebel-Lizorkin space and Lipschitz spaces.
基金This work is supported by the National Natural Science Foundation of China(No.11671113)the National Postdoctoral Program for Innovative Talents(No.BX20180347).
文摘In this paper,we develop the truncated Euler-Maruyama(EM)method for stochastic differential equations with piecewise continuous arguments(SDEPCAs),and consider the strong convergence theory under the local Lipschitz condition plus the Khasminskii-type condition.The order of convergence is obtained.Moreover,we show that the truncated EM method can preserve the exponential mean square stability of SDEPCAs.Numerical examples are provided to support our conclusions.