In this paper, a new method of filtering for Lipschitz nonlinear systems is proposed in the form of an LMI optimization problem. The proposed filter has guaranteed decay rate (exponential convergence) and is robust ag...In this paper, a new method of filtering for Lipschitz nonlinear systems is proposed in the form of an LMI optimization problem. The proposed filter has guaranteed decay rate (exponential convergence) and is robust against unknown exogenous disturbance. In addition, thanks to the linearity of the proposed LMIs in the admissible Lipschitz constant, it can be maximized via LMI optimization. This adds an extra important feature to the observer, robustness against nonlinear uncertainty. Explicit bound on the tolerable nonlinear uncertainty is derived. The new LMI formulation also allows optimizations over the disturbance attenuation level ( cost). Then, the admissible Lipschitz constant and the disturbance attenuation level of the filter are simultaneously optimized through LMI multiobjective optimization.展开更多
This paper investigates the finite-time H_(∞)control problem for a class of nonlinear discrete-time one-sided Lipschitz systems with uncertainties.Using the one-sided Lipschitz and quadratically inner-bounded conditi...This paper investigates the finite-time H_(∞)control problem for a class of nonlinear discrete-time one-sided Lipschitz systems with uncertainties.Using the one-sided Lipschitz and quadratically inner-bounded conditions,the authors derive less conservative criterion for the controller design and observer design.A new criterion is proposed to ensure the closed-loop system is finite-time bounded(FTB).The sufficient conditions are established to ensure the closed-loop system is H_(∞)finite-time bounded(H_(∞)FTB)in terms of matrix inequalities.The controller gains and observer gains are given.A numerical example is provided to demonstrate the effectiveness of the proposed results.展开更多
文摘In this paper, a new method of filtering for Lipschitz nonlinear systems is proposed in the form of an LMI optimization problem. The proposed filter has guaranteed decay rate (exponential convergence) and is robust against unknown exogenous disturbance. In addition, thanks to the linearity of the proposed LMIs in the admissible Lipschitz constant, it can be maximized via LMI optimization. This adds an extra important feature to the observer, robustness against nonlinear uncertainty. Explicit bound on the tolerable nonlinear uncertainty is derived. The new LMI formulation also allows optimizations over the disturbance attenuation level ( cost). Then, the admissible Lipschitz constant and the disturbance attenuation level of the filter are simultaneously optimized through LMI multiobjective optimization.
基金supported by National Natural Science Foundation of China(61174053)National Key Basic Research Program of China(2014CB845301/2/3)+3 种基金Fundamental Research Funds for the Central Universities(2014ZP0021)Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China(708069)partially by Key Laboratory of Autonomous Systems and Networked Control,Ministry of EducationKey Laboratory of Surface Functional Structure Manufacturing of Guangdong Higher Education Institutes
基金supported by the Natural Science Foundation of Tianjin under Grant No.18JCYBJC88000.
文摘This paper investigates the finite-time H_(∞)control problem for a class of nonlinear discrete-time one-sided Lipschitz systems with uncertainties.Using the one-sided Lipschitz and quadratically inner-bounded conditions,the authors derive less conservative criterion for the controller design and observer design.A new criterion is proposed to ensure the closed-loop system is finite-time bounded(FTB).The sufficient conditions are established to ensure the closed-loop system is H_(∞)finite-time bounded(H_(∞)FTB)in terms of matrix inequalities.The controller gains and observer gains are given.A numerical example is provided to demonstrate the effectiveness of the proposed results.
基金Supported by the National Nature Science Foundation of China(61174065)the Jiangsu Provincial Department of Education(10KJB20002)+1 种基金Nature Science Foundation at Nantong University(11Z05511Z056)