In this paper, we investigate the problem of approximating solutions of the equations of Lipschitzian ψ-strongly accretive operators and fixed points of Lipschitzian ψ-hemicontractive operators by lshikawa type iter...In this paper, we investigate the problem of approximating solutions of the equations of Lipschitzian ψ-strongly accretive operators and fixed points of Lipschitzian ψ-hemicontractive operators by lshikawa type iterative sequences with errors. Our results unify, improve and extend the results obtained previously by several authors including Li and Liu (Acta Math. Sinica 41 (4)(1998), 845-850), and Osilike (Nonlinear Anal. TMA, 36(1)(1999), 1-9), and also answer completely the open problems mentioned by Chidume (J. Math. Anal. Appl. 151 (2)(1990), 453-461).展开更多
Suppose that X is a real Banach space, H: X→X is a Lipschitz operator, T: X→X is a uniformly continuous operator with bounded range, and H+T is strongly accretive. Then the Ishikawa iteration process...Suppose that X is a real Banach space, H: X→X is a Lipschitz operator, T: X→X is a uniformly continuous operator with bounded range, and H+T is strongly accretive. Then the Ishikawa iteration process converges strongly to the unique solution of the equation Hx+Tx=f . This conclusion extends the corresponding results in recent papers.展开更多
Let X be a real uniformly smooth Banach space and let T:D(T)(?)X→Xbe (?)-hemicontractive and locally bounded at its fixed point q∈F(T).Under somesuitable assumptions on the iteration parameters {αn}and{βn},we have...Let X be a real uniformly smooth Banach space and let T:D(T)(?)X→Xbe (?)-hemicontractive and locally bounded at its fixed point q∈F(T).Under somesuitable assumptions on the iteration parameters {αn}and{βn},we have proved thatthe Mann and Ishikawa iteration processes for T converge strongly to the unique fixedpoint q of T.Several related results deal with iterative solutions of nonlinear equationsinvolving (?)-strongly quasi-accretive operators.Our results extend and generalize thosecorresponding ones by Xu and Roach,Zhou and Jia and others.展开更多
基金supported by the Teaching and Research Award Fund for Outstanding Young Teachers in Higher Educations of MOE,P.R.C.the National Natural Science Foundation of P.R.C.No.19801023
文摘In this paper, we investigate the problem of approximating solutions of the equations of Lipschitzian ψ-strongly accretive operators and fixed points of Lipschitzian ψ-hemicontractive operators by lshikawa type iterative sequences with errors. Our results unify, improve and extend the results obtained previously by several authors including Li and Liu (Acta Math. Sinica 41 (4)(1998), 845-850), and Osilike (Nonlinear Anal. TMA, 36(1)(1999), 1-9), and also answer completely the open problems mentioned by Chidume (J. Math. Anal. Appl. 151 (2)(1990), 453-461).
文摘Suppose that X is a real Banach space, H: X→X is a Lipschitz operator, T: X→X is a uniformly continuous operator with bounded range, and H+T is strongly accretive. Then the Ishikawa iteration process converges strongly to the unique solution of the equation Hx+Tx=f . This conclusion extends the corresponding results in recent papers.
文摘Let X be a real uniformly smooth Banach space and let T:D(T)(?)X→Xbe (?)-hemicontractive and locally bounded at its fixed point q∈F(T).Under somesuitable assumptions on the iteration parameters {αn}and{βn},we have proved thatthe Mann and Ishikawa iteration processes for T converge strongly to the unique fixedpoint q of T.Several related results deal with iterative solutions of nonlinear equationsinvolving (?)-strongly quasi-accretive operators.Our results extend and generalize thosecorresponding ones by Xu and Roach,Zhou and Jia and others.