In this paper, using an equivalent characterization of the Besov space by its wavelet coefficients and the discretization technique due to Maiorov, we determine the asymptotic degree of the Bernstein n-widths of the c...In this paper, using an equivalent characterization of the Besov space by its wavelet coefficients and the discretization technique due to Maiorov, we determine the asymptotic degree of the Bernstein n-widths of the compact embeddings Bq0s+t(Lp0(Ω))→Bq1s(Lp1(Ω)), t〉max{d(1/p0-1/p1), 0}, 1 ≤ p0, p1, q0, q1 ≤∞,where Bq0s+t(Lp0(Ω)) is a Besov space defined on the bounded Lipschitz domain Ω ? Rd. The results we obtained here are just dual to the known results of Kolmogorov widths on the related classes of functions.展开更多
We show that a Lipschitz domain can be expanded solely near a part of its boundary, assuming that the part is enclosed by a piecewise C1 curve. The expanded domain as well as the extended part are both Lipschitz. We a...We show that a Lipschitz domain can be expanded solely near a part of its boundary, assuming that the part is enclosed by a piecewise C1 curve. The expanded domain as well as the extended part are both Lipschitz. We apply this result to prove a regular decomposition of standard wector Sobolev spaces with vanishing traces only on part of the boundary. Another application in the construction of low-regularity projectors into finite element spaces with partial boundary conditions is also indicated.展开更多
Let L be a second-order linear elliptic operator with complex coefficients. It is shown that if the L^p Dirichlet problem for the elliptic system L(u) = 0 in a fixed Lipschitz domain Ω in Rd is solvable for some 1 &l...Let L be a second-order linear elliptic operator with complex coefficients. It is shown that if the L^p Dirichlet problem for the elliptic system L(u) = 0 in a fixed Lipschitz domain Ω in Rd is solvable for some 1 < p = p_0 <2(d-1)/(d-2), then it is solvable for all p satisfying ■ The proof is based on a real-variable argument. It only requires that local solutions of L(u) = 0 satisfy a boundary Cacciopoli inequality.展开更多
In this paper, we give the four equivalent characterizations for the weighted local hardy spaces on Lipschitz domains. Also, we give their application for the harmonic function defined in bounded Lipschitz domains.
In this article, we give the three-sphere inequalities and three-ball inequalities for the singular elliptic equation div(A∨u) - Vu =0, and the three-ball inequalities on the characteristic plane and the three-cyli...In this article, we give the three-sphere inequalities and three-ball inequalities for the singular elliptic equation div(A∨u) - Vu =0, and the three-ball inequalities on the characteristic plane and the three-cylinder inequalities for the singular parabolic equation Эtu-div(A∨u) + Vu = 0, where the singular potential V belonging to the Kato-Fefferman- Phong's class. Some applications are also discussed.展开更多
基金supported by Natural Science Foundation of Inner Mongolia(Grant No.2011MS0103)supported by National Natural Science Foundation of China(Grant No.10671019)
文摘In this paper, using an equivalent characterization of the Besov space by its wavelet coefficients and the discretization technique due to Maiorov, we determine the asymptotic degree of the Bernstein n-widths of the compact embeddings Bq0s+t(Lp0(Ω))→Bq1s(Lp1(Ω)), t〉max{d(1/p0-1/p1), 0}, 1 ≤ p0, p1, q0, q1 ≤∞,where Bq0s+t(Lp0(Ω)) is a Besov space defined on the bounded Lipschitz domain Ω ? Rd. The results we obtained here are just dual to the known results of Kolmogorov widths on the related classes of functions.
文摘We show that a Lipschitz domain can be expanded solely near a part of its boundary, assuming that the part is enclosed by a piecewise C1 curve. The expanded domain as well as the extended part are both Lipschitz. We apply this result to prove a regular decomposition of standard wector Sobolev spaces with vanishing traces only on part of the boundary. Another application in the construction of low-regularity projectors into finite element spaces with partial boundary conditions is also indicated.
文摘Let L be a second-order linear elliptic operator with complex coefficients. It is shown that if the L^p Dirichlet problem for the elliptic system L(u) = 0 in a fixed Lipschitz domain Ω in Rd is solvable for some 1 < p = p_0 <2(d-1)/(d-2), then it is solvable for all p satisfying ■ The proof is based on a real-variable argument. It only requires that local solutions of L(u) = 0 satisfy a boundary Cacciopoli inequality.
基金Project supported by the National Natural Science Foundation of China (No. 10377108)the Natural Science Foundation of Guangdong Province (No. 031495), China
文摘In this paper, we give the four equivalent characterizations for the weighted local hardy spaces on Lipschitz domains. Also, we give their application for the harmonic function defined in bounded Lipschitz domains.
基金supported in part by the NNSF of China (10471069, 10771110)by NSF of Ningbo City (2009A610084)
文摘In this article, we give the three-sphere inequalities and three-ball inequalities for the singular elliptic equation div(A∨u) - Vu =0, and the three-ball inequalities on the characteristic plane and the three-cylinder inequalities for the singular parabolic equation Эtu-div(A∨u) + Vu = 0, where the singular potential V belonging to the Kato-Fefferman- Phong's class. Some applications are also discussed.