Characterizations of differentiability are obtained for continuous convex functions defined on nonempty open convex sets of Banach spaces as a generalization and application of a mumber of mathematicians several years...Characterizations of differentiability are obtained for continuous convex functions defined on nonempty open convex sets of Banach spaces as a generalization and application of a mumber of mathematicians several years effort, and a characteristic theorem is given for Banach spaces which are (weak) Asplund spaces.展开更多
We discuss the relationship between Lipschitz functions and convex functions. By these relations, we give a sufficient condition for the set of points where Lipschitz functions on a Hilbert space is Frechet differenti...We discuss the relationship between Lipschitz functions and convex functions. By these relations, we give a sufficient condition for the set of points where Lipschitz functions on a Hilbert space is Frechet differentiate to be residual.展开更多
In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Su...In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Sub-differential. We extend the results on the characterizations of non-smooth convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the monotonicity of its sub-differentials to the lower semi-continuous pseudo-convex functions on real Banach spaces.展开更多
The aim of this paper is to investigate the differentiability(Gateaux differentiabllity and subdifferentiability) of continuous convex functions on locally convex spaces and to study the behaviour of some important re...The aim of this paper is to investigate the differentiability(Gateaux differentiabllity and subdifferentiability) of continuous convex functions on locally convex spaces and to study the behaviour of some important results for this research area in locally convex spaces.展开更多
This paper presents a type of variational tinuous functions on certain subsets in duals principles for real valued ω^* lower semicon- of locally convex spaces, and resolve a problem concerning differentiability of c...This paper presents a type of variational tinuous functions on certain subsets in duals principles for real valued ω^* lower semicon- of locally convex spaces, and resolve a problem concerning differentiability of convex functions on general Banach spaces. They are done through discussing differentiability of convex functions on nonlinear topological spaces and convexification of nonconvex functions on topological linear spaces.展开更多
A Riesz space K1 whose elements are pairs of convex-set collections is presented for the study on the calculus of generalized quasi-differentiable functions. The space K1 is constructed by introducing a well-defined e...A Riesz space K1 whose elements are pairs of convex-set collections is presented for the study on the calculus of generalized quasi-differentiable functions. The space K1 is constructed by introducing a well-defined equivalence relation among pairs of collections of convex sets. Some important properties on the norm and operations in K1 are given.展开更多
A locally convex space is said to be a Gateaux differentiability space (GDS) provided every continuous convex function defined on a nonempty convex open subset D of the space is densely Gateaux differentiable in .D.Th...A locally convex space is said to be a Gateaux differentiability space (GDS) provided every continuous convex function defined on a nonempty convex open subset D of the space is densely Gateaux differentiable in .D.This paper shows that the product of a GDS and a family of separable Prechet spaces is a GDS,and that the product of a GDS and an arbitrary locally convex space endowed with the weak topology is a GDS.展开更多
Making use of the Carlson-Shaffer convolution operator, we introduce and study a new class of analytic functions related to conic domains. The main object of this paper is to investigate inclusion relations, coefficie...Making use of the Carlson-Shaffer convolution operator, we introduce and study a new class of analytic functions related to conic domains. The main object of this paper is to investigate inclusion relations, coefficient bound for this class. We also show that this class is closed under convolution with a convex function. Some applications are also discussed.展开更多
The purpose of this paper is to verify the Smulyan lemma for the support function, and also the Gateaux differentiability of the support function is studied on its domain. Moreover, we provide a characterization of Fr...The purpose of this paper is to verify the Smulyan lemma for the support function, and also the Gateaux differentiability of the support function is studied on its domain. Moreover, we provide a characterization of Frechet differentiability of the support function on the extremal points.展开更多
In this paper, using Salagean differential operator, we define and investigate a new subclass of univalent functions . We also establish a characterization property for functions belonging to the class .
In this paper, we establish the second-order differential equation system with the feedback controls for solving the problem of convex programming. Using Lagrange function and projection operator, the equivalent opera...In this paper, we establish the second-order differential equation system with the feedback controls for solving the problem of convex programming. Using Lagrange function and projection operator, the equivalent operator equations for the convex programming problems under the certain conditions are obtained. Then a second-order differential equation system with the feedback controls is constructed on the basis of operator equation. We prove that any accumulation point of the trajectory of the second-order differential equation system with the feedback controls is a solution to the convex programming problem. In the end, two examples using this differential equation system are solved. The numerical results are reported to verify the effectiveness of the second-order differential equation system with the feedback controls for solving the convex programming problem.展开更多
文摘Characterizations of differentiability are obtained for continuous convex functions defined on nonempty open convex sets of Banach spaces as a generalization and application of a mumber of mathematicians several years effort, and a characteristic theorem is given for Banach spaces which are (weak) Asplund spaces.
文摘We discuss the relationship between Lipschitz functions and convex functions. By these relations, we give a sufficient condition for the set of points where Lipschitz functions on a Hilbert space is Frechet differentiate to be residual.
文摘In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Sub-differential. We extend the results on the characterizations of non-smooth convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the monotonicity of its sub-differentials to the lower semi-continuous pseudo-convex functions on real Banach spaces.
文摘The aim of this paper is to investigate the differentiability(Gateaux differentiabllity and subdifferentiability) of continuous convex functions on locally convex spaces and to study the behaviour of some important results for this research area in locally convex spaces.
基金Project supported by the National Natural Science Foundation of China (No.10471114)the Pujian Provincial Natural Science Foundation of China (No.F00021)the Tianyuan Foundation of Mathematics (No,A0324618).
文摘This paper presents a type of variational tinuous functions on certain subsets in duals principles for real valued ω^* lower semicon- of locally convex spaces, and resolve a problem concerning differentiability of convex functions on general Banach spaces. They are done through discussing differentiability of convex functions on nonlinear topological spaces and convexification of nonconvex functions on topological linear spaces.
文摘A Riesz space K1 whose elements are pairs of convex-set collections is presented for the study on the calculus of generalized quasi-differentiable functions. The space K1 is constructed by introducing a well-defined equivalence relation among pairs of collections of convex sets. Some important properties on the norm and operations in K1 are given.
基金Supported by the NSF of China (10071063 and 10471114)
文摘A locally convex space is said to be a Gateaux differentiability space (GDS) provided every continuous convex function defined on a nonempty convex open subset D of the space is densely Gateaux differentiable in .D.This paper shows that the product of a GDS and a family of separable Prechet spaces is a GDS,and that the product of a GDS and an arbitrary locally convex space endowed with the weak topology is a GDS.
文摘Making use of the Carlson-Shaffer convolution operator, we introduce and study a new class of analytic functions related to conic domains. The main object of this paper is to investigate inclusion relations, coefficient bound for this class. We also show that this class is closed under convolution with a convex function. Some applications are also discussed.
文摘The purpose of this paper is to verify the Smulyan lemma for the support function, and also the Gateaux differentiability of the support function is studied on its domain. Moreover, we provide a characterization of Frechet differentiability of the support function on the extremal points.
文摘In this paper, using Salagean differential operator, we define and investigate a new subclass of univalent functions . We also establish a characterization property for functions belonging to the class .
文摘In this paper, we establish the second-order differential equation system with the feedback controls for solving the problem of convex programming. Using Lagrange function and projection operator, the equivalent operator equations for the convex programming problems under the certain conditions are obtained. Then a second-order differential equation system with the feedback controls is constructed on the basis of operator equation. We prove that any accumulation point of the trajectory of the second-order differential equation system with the feedback controls is a solution to the convex programming problem. In the end, two examples using this differential equation system are solved. The numerical results are reported to verify the effectiveness of the second-order differential equation system with the feedback controls for solving the convex programming problem.