期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
MULTIDIMENSIONAL GOURSAT PROBLEM FOR SEMILINEAR HYPERBOLIC EQUATIONS
1
作者 FANG DAOYUAN GONG XIAOQING Department of Applied Mathematics, Zhejiang University, Hangzhou 310027 Department of Applied Mathematics, Wuhan University of Hydraulic and Electrical Engineering, Wuhan 430072 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 1996年第1期43-50,共8页
In this paper we study the Goursat problem for semilinear hyperbolicequations with zero boundary condition where the boundary is the characteristic conefor hyperbolic operator. Our result shows that the solution is Li... In this paper we study the Goursat problem for semilinear hyperbolicequations with zero boundary condition where the boundary is the characteristic conefor hyperbolic operator. Our result shows that the solution is Lipschitz and is smoothaway from the characteristic cone. 展开更多
关键词 Multidimensional Goursat problem semilinear equation lipschitz solution
下载PDF
Lipschitz Continuous Solutions to the Cauchy Problem for Quasi-linear Hyperbolic Systems
2
作者 Xiang CHEN 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2012年第4期521-536,共16页
Lipschitz continuous solutions to the Cauchy problem for 1-D first order quasi-linear hyperbolic systems are considered. Based on the methods of approximation and integral equations, the author gives two definitions o... Lipschitz continuous solutions to the Cauchy problem for 1-D first order quasi-linear hyperbolic systems are considered. Based on the methods of approximation and integral equations, the author gives two definitions of Lipschitz solutions to the Cauchy problem and proves the existence and uniqueness of solutions. 展开更多
关键词 First order quasi-linear hyperbolic systems lipschitz continuous solution Cauchy problem Existence and uniqueness
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部