In this paper we study the Goursat problem for semilinear hyperbolicequations with zero boundary condition where the boundary is the characteristic conefor hyperbolic operator. Our result shows that the solution is Li...In this paper we study the Goursat problem for semilinear hyperbolicequations with zero boundary condition where the boundary is the characteristic conefor hyperbolic operator. Our result shows that the solution is Lipschitz and is smoothaway from the characteristic cone.展开更多
Lipschitz continuous solutions to the Cauchy problem for 1-D first order quasi-linear hyperbolic systems are considered. Based on the methods of approximation and integral equations, the author gives two definitions o...Lipschitz continuous solutions to the Cauchy problem for 1-D first order quasi-linear hyperbolic systems are considered. Based on the methods of approximation and integral equations, the author gives two definitions of Lipschitz solutions to the Cauchy problem and proves the existence and uniqueness of solutions.展开更多
基金This work is partially supported by National Natural Science Foundation of China.
文摘In this paper we study the Goursat problem for semilinear hyperbolicequations with zero boundary condition where the boundary is the characteristic conefor hyperbolic operator. Our result shows that the solution is Lipschitz and is smoothaway from the characteristic cone.
文摘Lipschitz continuous solutions to the Cauchy problem for 1-D first order quasi-linear hyperbolic systems are considered. Based on the methods of approximation and integral equations, the author gives two definitions of Lipschitz solutions to the Cauchy problem and proves the existence and uniqueness of solutions.