应用中的各种因素可能造成数据缺失,影响后续任务的分析。因此,数据集缺失值的插补尤为重要。相比原本没有插补的处理,错误的插补值也会对分析造成更严重的偏差。针对这种情况,提出新的采用双重判别器的基于条件生成对抗插补网络(C-GAIN...应用中的各种因素可能造成数据缺失,影响后续任务的分析。因此,数据集缺失值的插补尤为重要。相比原本没有插补的处理,错误的插补值也会对分析造成更严重的偏差。针对这种情况,提出新的采用双重判别器的基于条件生成对抗插补网络(C-GAIN)的缺失值插补算法DDC-GAIN(Dual Discriminator based on C-GAIN)。该算法通过一个辅助判别器辅助主判别器判断预测值的真假,即根据一个样本的全局信息判断这个样本生成的真假,更注重特征之间的关系,以此估算预测值。在4个数据集上与5种经典插补算法进行对比实验,结果表明:同样条件下,DDC-GAIN算法在样本量较大时的均方根误差(RMSE)最低;在Default credit card数据集上缺失率为15%时,DDC-GAIN算法的RMSE比次优算法C-GAIN降低了28.99%。这说明利用辅助判别器帮助主判别器学习特征之间的关系是有效的。展开更多
为了改善红外与可见光图像融合的视觉效果,通过潜在低秩表示将两种不同源的图像分别分解为各自的低秩分量和去除噪声的稀疏分量,采用KL变换确定权重对稀疏分量进行加权融合得到融合稀疏图。再对双判别器的生成对抗网络重设计,借助VGG16...为了改善红外与可见光图像融合的视觉效果,通过潜在低秩表示将两种不同源的图像分别分解为各自的低秩分量和去除噪声的稀疏分量,采用KL变换确定权重对稀疏分量进行加权融合得到融合稀疏图。再对双判别器的生成对抗网络重设计,借助VGG16网络提取两种源的低秩分量特征作为该网络的输入,通过生成器和判别器的博弈来生成融合低秩图。最后,将融合稀疏图与融合低秩图进行叠加获得最终的融合结果。实验结果表明,在TNO数据集上,与所列的5种先进方法相比,本文所提出的方法在熵、标准差、互信息、差异相关性总和及多尺度结构相似度5种指标上均获得最优结果,相比于次优值,5种指标分别提高了2.43%,4.68%,2.29%,2.24%,1.74%。在RoadScene数据集上只在差异相关性总和及多尺度结构相似度两种指标上取得最优,另外3种指标仅次于GTF(gradient transfer and total variation minimization)方法,但图像视觉效果明显优于GTF方法。综合主观评价和客观评价分析,本文所提方法确实能获得高质量的融合图像,与多种方法相比具有明显的优势。展开更多
文摘应用中的各种因素可能造成数据缺失,影响后续任务的分析。因此,数据集缺失值的插补尤为重要。相比原本没有插补的处理,错误的插补值也会对分析造成更严重的偏差。针对这种情况,提出新的采用双重判别器的基于条件生成对抗插补网络(C-GAIN)的缺失值插补算法DDC-GAIN(Dual Discriminator based on C-GAIN)。该算法通过一个辅助判别器辅助主判别器判断预测值的真假,即根据一个样本的全局信息判断这个样本生成的真假,更注重特征之间的关系,以此估算预测值。在4个数据集上与5种经典插补算法进行对比实验,结果表明:同样条件下,DDC-GAIN算法在样本量较大时的均方根误差(RMSE)最低;在Default credit card数据集上缺失率为15%时,DDC-GAIN算法的RMSE比次优算法C-GAIN降低了28.99%。这说明利用辅助判别器帮助主判别器学习特征之间的关系是有效的。
文摘为了改善红外与可见光图像融合的视觉效果,通过潜在低秩表示将两种不同源的图像分别分解为各自的低秩分量和去除噪声的稀疏分量,采用KL变换确定权重对稀疏分量进行加权融合得到融合稀疏图。再对双判别器的生成对抗网络重设计,借助VGG16网络提取两种源的低秩分量特征作为该网络的输入,通过生成器和判别器的博弈来生成融合低秩图。最后,将融合稀疏图与融合低秩图进行叠加获得最终的融合结果。实验结果表明,在TNO数据集上,与所列的5种先进方法相比,本文所提出的方法在熵、标准差、互信息、差异相关性总和及多尺度结构相似度5种指标上均获得最优结果,相比于次优值,5种指标分别提高了2.43%,4.68%,2.29%,2.24%,1.74%。在RoadScene数据集上只在差异相关性总和及多尺度结构相似度两种指标上取得最优,另外3种指标仅次于GTF(gradient transfer and total variation minimization)方法,但图像视觉效果明显优于GTF方法。综合主观评价和客观评价分析,本文所提方法确实能获得高质量的融合图像,与多种方法相比具有明显的优势。