Self-oscillating systems abound in the natural world and offer substantial potential for applications in controllers,micro-motors,medical equipments,and so on.Currently,numerical methods have been widely utilized for ...Self-oscillating systems abound in the natural world and offer substantial potential for applications in controllers,micro-motors,medical equipments,and so on.Currently,numerical methods have been widely utilized for obtaining the characteristics of self-oscillation including amplitude and frequency.However,numerical methods are burdened by intricate computations and limited precision,hindering comprehensive investigations into self-oscillating systems.In this paper,the stability of a liquid crystal elastomer fiber self-oscillating system under a linear temperature field is studied,and analytical solutions for the amplitude and frequency are determined.Initially,we establish the governing equations of self-oscillation,elucidate two motion regimes,and reveal the underlying mechanism.Subsequently,we conduct a stability analysis and employ a multi-scale method to obtain the analytical solutions for the amplitude and frequency.The results show agreement between the multi-scale and numerical methods.This research contributes to the examination of diverse self-oscillating systems and advances the theoretical analysis of self-oscillating systems rooted in active materials.展开更多
Thermally responsive liquid crystal elastomers (LCEs) hold great promise in applications of soft robots and actuators because of the induced size and shape change with temperature. Experiments have successfully demons...Thermally responsive liquid crystal elastomers (LCEs) hold great promise in applications of soft robots and actuators because of the induced size and shape change with temperature. Experiments have successfully demonstrated that the LCE based bimorphs can be effective soft robots once integrated with soft sensors and thermal actuators. Here, we present an analytical transient thermo-mechanical model for a bimorph structure based soft robot, which consists of a strip of LCE and a thermal inert polymer actuated by an ultra-thin stretchable open-mesh shaped heater to mimic the unique locomotion behaviors of an inchworm. The coupled mechanical and thermal analysis based on the thermo-mechanical theory is carried out to underpin the transient bending behavior, and a systematic understanding is therefore achieved. The key analytical results reveal that the thickness and the modulus ratio of the LCE and the inert polymer layer dominate the transient bending deformation. The analytical results will not only render fundamental understanding of the actuation of bimorph structures, but also facilitate the rational design of soft robotics.展开更多
We develop a minimal phenomenological model to describe the auxetic response recently observed in liquid crystal elastomers, and further determine by theoretical calculation the critical condition required for the aux...We develop a minimal phenomenological model to describe the auxetic response recently observed in liquid crystal elastomers, and further determine by theoretical calculation the critical condition required for the auxetic response to occur.展开更多
Realizing multiple locked shapes in pre-oriented liquid crystal elastomers(LCEs)is highly desired for diversifying deformations and enhancing multi-functionality.However,conventional LCEs only deform between two shape...Realizing multiple locked shapes in pre-oriented liquid crystal elastomers(LCEs)is highly desired for diversifying deformations and enhancing multi-functionality.However,conventional LCEs only deform between two shapes for each actuation cycle upon liquid crystal-isotropic phase transitions induced by external stimuli.Here,we propose to regulate the actuation modes and the locked shapes of a pre-orientated epoxy LCE by combining dynamic covalent bonds with cooling-rate-mediated control.The actuation modes can be adjusted on demand by exchange reactions of dynamic covalent bonds.Derived from the established actuation modes,such as elongation,bending,and spiraling,the epoxy LCE displays varied locked shapes at room temperature under different cooling rates.Various mediums are utilized to control the cooling rate,including water,silicone oil,and copper plates.This approach provides a novel way for regulating the actuation modes and locked shapes of cuttingedge intelligent devices.展开更多
Discussion is presented on the use of the photoisomerization of azobenzene chromophore in the design andpreparation of novel functional materials. The two systems reviewed are azobenzene polymer-stabilized liquid crys...Discussion is presented on the use of the photoisomerization of azobenzene chromophore in the design andpreparation of novel functional materials. The two systems reviewed are azobenzene polymer-stabilized liquid crystals andazobenzene elastomers. In the first case, a polymer network containing azobenzene moieties is used to optically induce andstabilize a long-range liquid crystal orientation without the need of treating the surfaces of the substrates. This optical andrubbing-free approach was applied to nematic and ferroelectric liquid crystals. In the second case, an azobenzene side-chainliquid crystalline polymer is grafted onto a styrene-butadiene-styrene triblock copolymer to yield a photoactive thermoplasticelastomer. Coupled mechanical and optical effects make possible the formation of dimaction gratings that may be useful formechanically tunable optical devices.展开更多
The thermal and mechanical properties of Liquid Crystal Elastomers (LCEs) were characterized using various techniques for understanding of their physical behavior. The material used for investigation was synthesized b...The thermal and mechanical properties of Liquid Crystal Elastomers (LCEs) were characterized using various techniques for understanding of their physical behavior. The material used for investigation was synthesized by us, using Finklemann procedure, with proper cross linking density in nematic phase. The material is found to have unique coupling between anisotropicorder of liquid crystal component and elasticity of polymer network. The chemical structures were confirmed by Fourier Transform Infrared (FTIR) Spectroscopy and Scanning Electron Microscopy (SEM). Fabry Perot Scattering Studies (FPSS), Thermo gravimetric Analysis (TGA) and Differential Scanning Calorimatory (DSC) were used to study thermal properties. The mechanical properties were studied using force sensor. Our investigation shows that this synthesized Liquid Crystal Elastomer has ability of spontaneous change as a function of temperature and mechanical force, which shows it as a unique class of soft material.展开更多
Solid materials with dynamically tunable circularly polarized luminescence(CPL) feature higher security levels and devicefriendly characteristics, showing great superiority in the field of information technology and a...Solid materials with dynamically tunable circularly polarized luminescence(CPL) feature higher security levels and devicefriendly characteristics, showing great superiority in the field of information technology and anti-counterfeiting. To address the limited photoisomerization of fluorescent photoswitch in CPL-active solid materials, here a cholesteric liquid crystal elastomer(CLCE) containing a hydrogen-bonded(H-bonded) polymerizable fluorescent switch AHBA-PSD is prepared. Owing to the good flexibility and low glass-transition temperature of CLCE, AHBA-PSD shows a fast and fully reversible photocyclization/cycloreversion with fluorochromic behavior in CLCE. Further, by controlling the spectral overlapping area between the emission and reflection bands, the CLCE exhibits a strong CPL with a g_(lum) value of up to 0.76 accompanied by a reversible phototunable CPL signal. Meanwhile, the H-bond helps to stabilize the mechanical property, and the force-induced switching-off of CPL signal could be achieved due to the destroyed helical structures by external force. Finally, an automatically-recognized identification card with abundant chiroptical information is demonstrated.展开更多
In the past decades,ion conductive polymers and elastomers have drawn worldwide attention for their advanced functions in batteries,electroactive soft robotics,and sensors.Stretchable ionic elastomers with dispersed s...In the past decades,ion conductive polymers and elastomers have drawn worldwide attention for their advanced functions in batteries,electroactive soft robotics,and sensors.Stretchable ionic elastomers with dispersed soft ionic moieties such as ionic liquids have gained remarkable attention as soft sensors,in applications such as the wearable devices that are often called electric skins.A considerable amount of research has been done on ionic-elastomer-based strain,pressure,and shear sensors;however,to the best of our knowledge,this research has not yet been reviewed.In this review,we summarize the materials and performance properties of engineered ionic elastomer actuators and sensors.First,we review three classes of ionic elastomer actuators—namely,ionic polymer metal composites,ionic conducting polymers,and ionic polymer/carbon nanocomposites—and provide perspectives for future actuators,such as adaptive four-dimensional(4D)printed systems and ionic liquid crystal elastomers(iLCEs).Next,we review the state of the art of ionic elastomeric strain and pressure sensors.We also discuss future wearable strain sensors for biomechanical applications and sports performance tracking.Finally,we present the preliminary results of iLCE sensors based on flexoelectric signals and their amplification by integrating them with organic electrochemical transistors.展开更多
Synthesizing orientated liquid crystal elastomers(LCEs)via the two-stage thiol-acrylate Michael addition and photopolymerization(TAMAP)reaction is extensively used.However,excess acrylates,initiators,and strong stimul...Synthesizing orientated liquid crystal elastomers(LCEs)via the two-stage thiol-acrylate Michael addition and photopolymerization(TAMAP)reaction is extensively used.However,excess acrylates,initiators,and strong stimuli are inevitably involved in the second stage crosslinking.Herein,we simplify the strategy through taking advantage of a volatile alkaline(originally added to catalyze the thiol-acrylate addition in the first crosslinking stage).Without excess functional groups,the residual catalyst after annealing is still enough to trigger reactions of dynamic covalent bonds at a relatively mild temperature(80℃)to program the alignment of LCEs.The reversible reaction switches off by itself after this process since the catalyst gradually but totally evaporates upon heating.The obtained soft actuators exhibit robust actuation during repeated deformation(over 1000 times).Many shape-morphing modes can be achieved by rationally designing orientation patterns.This strategy not only facilitates the practical synthesis of LCE actuators,but also balances the intrinsic conflict between stability and reprogrammability of exchangeable LCEs.Moreover,the method of applying volatile catalysts has the potential to be extended to other dynamic covalent bonds(DCBs)applied to crosslinked polymer systems.展开更多
Liquid crystal elastomers are active materials that combine the anisotropic properties of liquid crystals with the elasticity of polymer networks.The LCEs exhibit remarkable reversible contraction and elongation capab...Liquid crystal elastomers are active materials that combine the anisotropic properties of liquid crystals with the elasticity of polymer networks.The LCEs exhibit remarkable reversible contraction and elongation capabilities in response to external stimuli,rendering them highly promising for diverse applications,such as soft robotics,haptic devices,shape morphing structures,etc,However,the predominant reliance on heating as the driving stimulus for LCEs has limited their practical applications.This drawback can be effectively addressed by incorporating fllers,which can generate heat under various stimuli.The recent progress in LCE composites has significantly expanded the application potential of LCEs.In this minireview,we present the design strategies for soft actuators with LCE composites,followed by a detailed exploration of photothermal and electrothermal LCE.composites as prominent examples.Furthermore,we provide an outlook on the challenges and opportunities in the feld of LCE composites.展开更多
基金Project supported by the National Natural Science Foundation of China (No.12172001)the Anhui Provincial Natural Science Foundation of China (No.2208085Y01)+1 种基金the University Natural Science Research Project of Anhui Province of China (No.2022AH020029)the Housing and Urban-Rural Development Science and Technology Project of Anhui Province of China (No.2023-YF129)。
文摘Self-oscillating systems abound in the natural world and offer substantial potential for applications in controllers,micro-motors,medical equipments,and so on.Currently,numerical methods have been widely utilized for obtaining the characteristics of self-oscillation including amplitude and frequency.However,numerical methods are burdened by intricate computations and limited precision,hindering comprehensive investigations into self-oscillating systems.In this paper,the stability of a liquid crystal elastomer fiber self-oscillating system under a linear temperature field is studied,and analytical solutions for the amplitude and frequency are determined.Initially,we establish the governing equations of self-oscillation,elucidate two motion regimes,and reveal the underlying mechanism.Subsequently,we conduct a stability analysis and employ a multi-scale method to obtain the analytical solutions for the amplitude and frequency.The results show agreement between the multi-scale and numerical methods.This research contributes to the examination of diverse self-oscillating systems and advances the theoretical analysis of self-oscillating systems rooted in active materials.
基金Project supported by the National Basic Research Program(No.2015CB351901)the National Natural Science Foundation of China(Nos.11372272,11622221,11621062,11502009,and 11772030)+2 种基金the Doctoral New Investigator Grant from American Chemical Society Petroleum Research Fund of the National Science Foundation(Nos.1509763 and 1554499)the Opening Fund of State Key Laboratory for Strength and Vibration of Mechanical Structures,Xi’an Jiaotong University(No.SV2018-KF-13)the Fundamental Research Funds for the Central Universities(No.2017XZZX002-11)
文摘Thermally responsive liquid crystal elastomers (LCEs) hold great promise in applications of soft robots and actuators because of the induced size and shape change with temperature. Experiments have successfully demonstrated that the LCE based bimorphs can be effective soft robots once integrated with soft sensors and thermal actuators. Here, we present an analytical transient thermo-mechanical model for a bimorph structure based soft robot, which consists of a strip of LCE and a thermal inert polymer actuated by an ultra-thin stretchable open-mesh shaped heater to mimic the unique locomotion behaviors of an inchworm. The coupled mechanical and thermal analysis based on the thermo-mechanical theory is carried out to underpin the transient bending behavior, and a systematic understanding is therefore achieved. The key analytical results reveal that the thickness and the modulus ratio of the LCE and the inert polymer layer dominate the transient bending deformation. The analytical results will not only render fundamental understanding of the actuation of bimorph structures, but also facilitate the rational design of soft robotics.
基金Project supported by the National Natural Science Foundation of China (Grant No. 22193032)。
文摘We develop a minimal phenomenological model to describe the auxetic response recently observed in liquid crystal elastomers, and further determine by theoretical calculation the critical condition required for the auxetic response to occur.
基金financially supported by the National Natural Science Foundation of China(No.22375114)。
文摘Realizing multiple locked shapes in pre-oriented liquid crystal elastomers(LCEs)is highly desired for diversifying deformations and enhancing multi-functionality.However,conventional LCEs only deform between two shapes for each actuation cycle upon liquid crystal-isotropic phase transitions induced by external stimuli.Here,we propose to regulate the actuation modes and the locked shapes of a pre-orientated epoxy LCE by combining dynamic covalent bonds with cooling-rate-mediated control.The actuation modes can be adjusted on demand by exchange reactions of dynamic covalent bonds.Derived from the established actuation modes,such as elongation,bending,and spiraling,the epoxy LCE displays varied locked shapes at room temperature under different cooling rates.Various mediums are utilized to control the cooling rate,including water,silicone oil,and copper plates.This approach provides a novel way for regulating the actuation modes and locked shapes of cuttingedge intelligent devices.
文摘Discussion is presented on the use of the photoisomerization of azobenzene chromophore in the design andpreparation of novel functional materials. The two systems reviewed are azobenzene polymer-stabilized liquid crystals andazobenzene elastomers. In the first case, a polymer network containing azobenzene moieties is used to optically induce andstabilize a long-range liquid crystal orientation without the need of treating the surfaces of the substrates. This optical andrubbing-free approach was applied to nematic and ferroelectric liquid crystals. In the second case, an azobenzene side-chainliquid crystalline polymer is grafted onto a styrene-butadiene-styrene triblock copolymer to yield a photoactive thermoplasticelastomer. Coupled mechanical and optical effects make possible the formation of dimaction gratings that may be useful formechanically tunable optical devices.
文摘The thermal and mechanical properties of Liquid Crystal Elastomers (LCEs) were characterized using various techniques for understanding of their physical behavior. The material used for investigation was synthesized by us, using Finklemann procedure, with proper cross linking density in nematic phase. The material is found to have unique coupling between anisotropicorder of liquid crystal component and elasticity of polymer network. The chemical structures were confirmed by Fourier Transform Infrared (FTIR) Spectroscopy and Scanning Electron Microscopy (SEM). Fabry Perot Scattering Studies (FPSS), Thermo gravimetric Analysis (TGA) and Differential Scanning Calorimatory (DSC) were used to study thermal properties. The mechanical properties were studied using force sensor. Our investigation shows that this synthesized Liquid Crystal Elastomer has ability of spontaneous change as a function of temperature and mechanical force, which shows it as a unique class of soft material.
基金supported by the National Natural Science Foundation of China (52073017, 51773009)the High Performance Computing Platform of Beijing University of Chemical Technology。
文摘Solid materials with dynamically tunable circularly polarized luminescence(CPL) feature higher security levels and devicefriendly characteristics, showing great superiority in the field of information technology and anti-counterfeiting. To address the limited photoisomerization of fluorescent photoswitch in CPL-active solid materials, here a cholesteric liquid crystal elastomer(CLCE) containing a hydrogen-bonded(H-bonded) polymerizable fluorescent switch AHBA-PSD is prepared. Owing to the good flexibility and low glass-transition temperature of CLCE, AHBA-PSD shows a fast and fully reversible photocyclization/cycloreversion with fluorochromic behavior in CLCE. Further, by controlling the spectral overlapping area between the emission and reflection bands, the CLCE exhibits a strong CPL with a g_(lum) value of up to 0.76 accompanied by a reversible phototunable CPL signal. Meanwhile, the H-bond helps to stabilize the mechanical property, and the force-induced switching-off of CPL signal could be achieved due to the destroyed helical structures by external force. Finally, an automatically-recognized identification card with abundant chiroptical information is demonstrated.
基金This work was supported by the National Science Foundation(DMR-1904167).
文摘In the past decades,ion conductive polymers and elastomers have drawn worldwide attention for their advanced functions in batteries,electroactive soft robotics,and sensors.Stretchable ionic elastomers with dispersed soft ionic moieties such as ionic liquids have gained remarkable attention as soft sensors,in applications such as the wearable devices that are often called electric skins.A considerable amount of research has been done on ionic-elastomer-based strain,pressure,and shear sensors;however,to the best of our knowledge,this research has not yet been reviewed.In this review,we summarize the materials and performance properties of engineered ionic elastomer actuators and sensors.First,we review three classes of ionic elastomer actuators—namely,ionic polymer metal composites,ionic conducting polymers,and ionic polymer/carbon nanocomposites—and provide perspectives for future actuators,such as adaptive four-dimensional(4D)printed systems and ionic liquid crystal elastomers(iLCEs).Next,we review the state of the art of ionic elastomeric strain and pressure sensors.We also discuss future wearable strain sensors for biomechanical applications and sports performance tracking.Finally,we present the preliminary results of iLCE sensors based on flexoelectric signals and their amplification by integrating them with organic electrochemical transistors.
基金supported by the National Natural Science Foundation of China(Nos.51722303,21674057 and 21788102).
文摘Synthesizing orientated liquid crystal elastomers(LCEs)via the two-stage thiol-acrylate Michael addition and photopolymerization(TAMAP)reaction is extensively used.However,excess acrylates,initiators,and strong stimuli are inevitably involved in the second stage crosslinking.Herein,we simplify the strategy through taking advantage of a volatile alkaline(originally added to catalyze the thiol-acrylate addition in the first crosslinking stage).Without excess functional groups,the residual catalyst after annealing is still enough to trigger reactions of dynamic covalent bonds at a relatively mild temperature(80℃)to program the alignment of LCEs.The reversible reaction switches off by itself after this process since the catalyst gradually but totally evaporates upon heating.The obtained soft actuators exhibit robust actuation during repeated deformation(over 1000 times).Many shape-morphing modes can be achieved by rationally designing orientation patterns.This strategy not only facilitates the practical synthesis of LCE actuators,but also balances the intrinsic conflict between stability and reprogrammability of exchangeable LCEs.Moreover,the method of applying volatile catalysts has the potential to be extended to other dynamic covalent bonds(DCBs)applied to crosslinked polymer systems.
基金supported by the Fundamental Research Funds for the Central Universities[YWF-22-K-101]National Natural Science Foundation of China[12202120]Science Technology and Innovation Program of Shenzhen[JCYJ20220531095210022].
文摘Liquid crystal elastomers are active materials that combine the anisotropic properties of liquid crystals with the elasticity of polymer networks.The LCEs exhibit remarkable reversible contraction and elongation capabilities in response to external stimuli,rendering them highly promising for diverse applications,such as soft robotics,haptic devices,shape morphing structures,etc,However,the predominant reliance on heating as the driving stimulus for LCEs has limited their practical applications.This drawback can be effectively addressed by incorporating fllers,which can generate heat under various stimuli.The recent progress in LCE composites has significantly expanded the application potential of LCEs.In this minireview,we present the design strategies for soft actuators with LCE composites,followed by a detailed exploration of photothermal and electrothermal LCE.composites as prominent examples.Furthermore,we provide an outlook on the challenges and opportunities in the feld of LCE composites.