In this study,a suitable CFD(computational fluid dynamics)model has been developed to investigate the influence of liquid height on the discharge coefficient of the orifice-type liquid distributors.The orifice flow in...In this study,a suitable CFD(computational fluid dynamics)model has been developed to investigate the influence of liquid height on the discharge coefficient of the orifice-type liquid distributors.The orifice flow in different diameters and liquid heights has been realized using the shear stress transport(SST)turbulence model and the Gamma Theta transition(GTT)model.In the ANSYS CFX software,two models are used in conjunction with an automatic wall treatment which allows for a smooth shift from a wall function(WF)to a low turbulent-Re near wall formulation(LTRW).The results of the models coupled with LTRW are closer to the experimental results compared with the models with WF,indicating that LTRW is more appropriate for the prediction of boundary layer characteristics of orifice flow.Simulation results show that the flow conditions of orifices change with the variation of liquid height.With respect to the turbulence in orifice,the SST model coupled with LTRW is recommended.However,with respect to the transition to turbulence in orifice with an increase in liquid height,the predictions of GTT model coupled with LTRW are superior to those obtained using other models.展开更多
The distribution performance of the gravity-type liquid distributor(GTLD) significantly affects column operation efficiency and the consequent product quality. In industrial settings, maldistribution is normally consi...The distribution performance of the gravity-type liquid distributor(GTLD) significantly affects column operation efficiency and the consequent product quality. In industrial settings, maldistribution is normally considered to be caused by vertical positional or coplanarity errors stemming from deflections associated with manufacture and installation, or even by excessive weight. The lack ofestimation protocols or standards impedes the description ofthis error, which influences the corresponding outflow rates. Given this situation, the paper proposes a lumped parameter, orifice position deviation(OPD), to facilitate the calculation of the relative discharge rate error(RDRE)based on a formula derivation, which allows the systematic analysis of the influence ofa single orifice or weir OPD.The paper introduces a sensitivity factor K as a concise and unified expression in theoretical RDREs for calibrating the influence of OPD on the RDREs ofgeometrically different orifices and weirs. With respect to the GTLD, a larger K indicates the need for more strict OPD requirements. The paper verifies that the extent of GTLD outflow nonuniformity is associated with diverging tendencies regarding its morphology, especially in the orifice and weir, which can be determined using our proposed procedures.展开更多
In order to eliminate mal-distribution and ensure the side arm to produce desirable gas quality a special distributor is proposed. The experimental distributor mainly consists of a straight through section,a gas extra...In order to eliminate mal-distribution and ensure the side arm to produce desirable gas quality a special distributor is proposed. The experimental distributor mainly consists of a straight through section,a gas extraction line,a liquid extraction line and a side arm branch. A gas orifice and a liquid orifice are mounted at the gas and liquid extraction line respectively to control the outlet gas quality. The diameter of the liquid orifice was set to 2. 50 mm and three gas orifices with different size( dG= 2. 65,5. 00,10. 00 mm) were tested. The experiments were carried out at an air-water two-phase flow loop. The gas superficial velocity ranged from 6. 0 to 20. 0 m /s and the liquid superficial velocity was in the range of 0. 02- 0. 18 m /s. Flow patterns such as wave flow,slug flow and annular flow were observed. The gas quality of the side arm branch was found mainly determined by the flow area ratio of the gas orifice to the liquid orifice and independent of gas and liquid superficial velocity,flow patterns and extraction flux.展开更多
基金the financial support from the National Basic Research Program of China(No.2009CB219905)the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT0936)the National Natural Science Foundation of China(No.21176172)
文摘In this study,a suitable CFD(computational fluid dynamics)model has been developed to investigate the influence of liquid height on the discharge coefficient of the orifice-type liquid distributors.The orifice flow in different diameters and liquid heights has been realized using the shear stress transport(SST)turbulence model and the Gamma Theta transition(GTT)model.In the ANSYS CFX software,two models are used in conjunction with an automatic wall treatment which allows for a smooth shift from a wall function(WF)to a low turbulent-Re near wall formulation(LTRW).The results of the models coupled with LTRW are closer to the experimental results compared with the models with WF,indicating that LTRW is more appropriate for the prediction of boundary layer characteristics of orifice flow.Simulation results show that the flow conditions of orifices change with the variation of liquid height.With respect to the turbulence in orifice,the SST model coupled with LTRW is recommended.However,with respect to the transition to turbulence in orifice with an increase in liquid height,the predictions of GTT model coupled with LTRW are superior to those obtained using other models.
文摘The distribution performance of the gravity-type liquid distributor(GTLD) significantly affects column operation efficiency and the consequent product quality. In industrial settings, maldistribution is normally considered to be caused by vertical positional or coplanarity errors stemming from deflections associated with manufacture and installation, or even by excessive weight. The lack ofestimation protocols or standards impedes the description ofthis error, which influences the corresponding outflow rates. Given this situation, the paper proposes a lumped parameter, orifice position deviation(OPD), to facilitate the calculation of the relative discharge rate error(RDRE)based on a formula derivation, which allows the systematic analysis of the influence ofa single orifice or weir OPD.The paper introduces a sensitivity factor K as a concise and unified expression in theoretical RDREs for calibrating the influence of OPD on the RDREs ofgeometrically different orifices and weirs. With respect to the GTLD, a larger K indicates the need for more strict OPD requirements. The paper verifies that the extent of GTLD outflow nonuniformity is associated with diverging tendencies regarding its morphology, especially in the orifice and weir, which can be determined using our proposed procedures.
基金Sponsored by the National Natural Science Foundation of China (Grant No.51006123)the Fundamental Research Funds for the Central Universities (Grant No.14CX05028A)
文摘In order to eliminate mal-distribution and ensure the side arm to produce desirable gas quality a special distributor is proposed. The experimental distributor mainly consists of a straight through section,a gas extraction line,a liquid extraction line and a side arm branch. A gas orifice and a liquid orifice are mounted at the gas and liquid extraction line respectively to control the outlet gas quality. The diameter of the liquid orifice was set to 2. 50 mm and three gas orifices with different size( dG= 2. 65,5. 00,10. 00 mm) were tested. The experiments were carried out at an air-water two-phase flow loop. The gas superficial velocity ranged from 6. 0 to 20. 0 m /s and the liquid superficial velocity was in the range of 0. 02- 0. 18 m /s. Flow patterns such as wave flow,slug flow and annular flow were observed. The gas quality of the side arm branch was found mainly determined by the flow area ratio of the gas orifice to the liquid orifice and independent of gas and liquid superficial velocity,flow patterns and extraction flux.