期刊文献+
共找到5,053篇文章
< 1 2 250 >
每页显示 20 50 100
Preparation of cluster states with trapped electrons on a liquid helium surface
1
作者 艾凌艳 石艳丽 张智明 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第10期30-33,共4页
We present a scheme for the preparation of one-dimensional (1D) and two-dimensional (2D) cluster states with electrons trapped on a liquid helium surface and driven by a classical laser beam. The two lowest levels... We present a scheme for the preparation of one-dimensional (1D) and two-dimensional (2D) cluster states with electrons trapped on a liquid helium surface and driven by a classical laser beam. The two lowest levels of the vertical motion of the electron act as a two-level system, and the quantized vibration of the electron along one of the parallel directions (the x direction) serves as the bosonic mode. The degrees of freedom of the vertical and parallel motions of the trapped electron can be coupled together by a classical laser field. With the proper frequency of the laser field, the cluster states can be realized. 展开更多
关键词 cluster states ELECTRONS liquid helium
下载PDF
Phosphotungstic acid ionic liquid for efficient photocatalytic desulfurization:Synthesis,application and mechanism
2
作者 Chenchao Hu Suhang Xun +5 位作者 Desheng Liu Junjie Zhang Minqiang He Wei Jiang Huaming Li Wenshuai Zhu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期101-111,共11页
An efficient mass transfer process is a critical factor for regulating catalytic activity in a photocatalytic desulfurization system.Herein,a phosphotungstic acid(HPW)active center is successfully composited with a qu... An efficient mass transfer process is a critical factor for regulating catalytic activity in a photocatalytic desulfurization system.Herein,a phosphotungstic acid(HPW)active center is successfully composited with a quaternary ammonium phosphotungstate-based hexadecyltrimethylammonium chloride ionic liquid(CTAC-HPW)by the ion exchange method for the photocatalytic oxidative desulfurization of dibenzothiophene sulfide.The keggin structure of HPW and highly mass transfer performance of organic cations synergistically enhanced the photocatalytic activity towards the effective convertion of dibenzothiophene(DBT)with the excitation of visible light.The deep desulfurization(<10 mg·kg^(-1))is attained within 30 min,and well stability is demonstrated within 25 cycles.Moreover,the CTAC-HPW photocatalyst projects well selectivity to interference from coexisting compounds such as olefins and aromatic hydrocarbons and universality of dibenzothiophenes,for example,4-methyldibenzothiophene(4-MDBT)and 4,6-dimethyldibenzothiophene(4,6-DMDBT).Ultimately,a possible photocatalytic desulfurization mechanism is proposed according to the Gaschromatography-mass spectrometry(GC-MS),proving that the final product is the corresponding sulfone.The trapping experiment and electron spin resonance(ESR)analysis confirmed that h^(+)and,COOH played critical roles in the oxidation process.The work offers a practicable strategy for efficiently converting DBT to DBTO_(2) with added value. 展开更多
关键词 Photocatalytic desulfurization EXTRACTION Ionic liquid CTAC-HPW
下载PDF
Simulation of liquid cone formation on the tip apex of indium field emission electric propulsion thrusters
3
作者 孙逸鸣 邓涵文 +1 位作者 刘欣宇 康小明 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第4期146-155,共10页
Field emission electric propulsion(FEEP) thrusters possess excellent characteristics, such as high specific impulse, low power requirements, compact size and precise pointing capabilities,making them ideal propulsion ... Field emission electric propulsion(FEEP) thrusters possess excellent characteristics, such as high specific impulse, low power requirements, compact size and precise pointing capabilities,making them ideal propulsion devices for micro-nano satellites. However, the detection of certain aspects, such as the evolution process of the liquid cone and the physical quantities at the cone apex, proves challenging due to the minute size of the needle tip and the vacuum environment in which they operate. Consequently, this paper introduces a computational fluid dynamics(CFD) model to gain insight into the formation process of the liquid cone on the tip apex of indium FEEP. The CFD model is based on electrohydrodynamic(EHD) equations and the volume of fluid(VOF) method. The entire cone formation process can be divided into three stages, and the time-dependent characteristics of the physical quantities at the cone apex are investigated. The influences of film thickness, apex radius size and applied voltage are compared.The results indicate a gradual increase in the values of electrostatic stress and surface tension stress at the cone apex over an initial period, followed by a rapid escalation within a short duration.Apex configurations featuring a small radius, thick film and high voltage exhibit a propensity for liquid cone formation, and the cone growth time decreases as the film thickness increases.Moreover, some unstable behavior is observed during the cone formation process. 展开更多
关键词 FEEP needle emitter liquid cone formation CFD simulation
下载PDF
Experimental study of the effect of gas discharge on ionic liquid electrospray
4
作者 石文 杨鹏飞 +1 位作者 宋培义 吴健 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第4期37-43,共7页
Ionic liquid electrospray(ILE) in an atmospheric environment is often accompanied by the gas discharge phenomenon. It interferes with the normal operation of the electrospray and the measurement of experimental parame... Ionic liquid electrospray(ILE) in an atmospheric environment is often accompanied by the gas discharge phenomenon. It interferes with the normal operation of the electrospray and the measurement of experimental parameters. In this study, electrospray experiments were conducted on the ionic liquid EMI-BF4. The observations revealed that the operating modes of the ionic liquid depend on the voltage polarity at high voltages. Additionally, a correspondence between the operating mode of ILE and the current signal in the circuit was established. The shape of the liquid cone formed at the needle tip bore a striking resemblance to the plume of corona discharge, suggesting that the motion trajectory of electrons influenced the curvature of the liquid cone. Steamer theory provided a clear explanation for the change in curvature as the voltage increased. 展开更多
关键词 ionic liquid ELECTROSPRAY Taylor cone jet corona discharge
下载PDF
Aircraft Observation and Simulation of the Supercooled Liquid Water Layer in a Warm Conveyor Belt over North China
5
作者 Jiefan YANG Fei YAN +3 位作者 Hengchi LEI Shuo JIA Xiaobo DONG Xiangfeng HU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第3期529-544,共16页
This paper studied a snow event over North China on 21 February 2017,using aircraft in-situ data,a Lagrangian analysis tool,and WRF simulations with different microphysical schemes to investigate the supercooled layer... This paper studied a snow event over North China on 21 February 2017,using aircraft in-situ data,a Lagrangian analysis tool,and WRF simulations with different microphysical schemes to investigate the supercooled layer of warm conveyor belts(WCBs).Based on the aircraft data,we found a fine vertical structure within clouds in the WCB and highlighted a 1-2 km thin supercooled liquid water layer with a maximum Liquid Water Content(LWC) exceeding0.5 g kg^(-1) during the vertical aircraft observation.Although the main features of thermodynamic profiles were essentially captured by both modeling schemes,the microphysical quantities exhibited large diversity with different microphysics schemes.The conventional Morrison two-moment scheme showed remarkable agreement with in-situ observations,both in terms of the thermodynamic structure and the supercooled liquid water layer.However,the microphysical structure of the WCB clouds,in terms of LWC and IWC,was not apparent in HUJI fast bin scheme.To reduce such uncertainty,future work may focus on improving the representation of microphysics in bin schemes with in-situ data and using similar assumptions for all schemes to isolate the impact of physics. 展开更多
关键词 warm conveyor belt Microphysical properties supercooled liquid water microphysics schemes
下载PDF
THE EXISTENCE AND UNIQUENESS OF TIME-PERIODIC SOLUTIONS TO THE NON-ISOTHERMAL MODEL FOR COMPRESSIBLE NEMATIC LIQUID CRYSTALS IN A PERIODIC DOMAIN
6
作者 陈爽 郭闪闪 许秋菊 《Acta Mathematica Scientia》 SCIE CSCD 2024年第3期947-972,共26页
In this paper,we are concerned with a three-dimensional non-isothermal model for the compressible nematic liquid crystal flows in a periodic domain.Under some smallness and structural assumptions imposed on the time-p... In this paper,we are concerned with a three-dimensional non-isothermal model for the compressible nematic liquid crystal flows in a periodic domain.Under some smallness and structural assumptions imposed on the time-periodic force,we establish the existence of the time-periodic solutions to the system by using a regularized approximation scheme and the topological degree theory.We also prove a uniqueness result via energy estimates. 展开更多
关键词 compressible nematic liquid crystals time-periodic solution topological degree theory energy estimates
下载PDF
Experimental investigation of the polarityswitching process with different bipolar ionic liquid thruster operating frequencies
7
作者 吴湘蓓 杨铖 +1 位作者 罗嘉伟 沈岩 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第6期1-13,共13页
The bipolar ionic liquid thruster employs ionic liquid as a propellant to discharge positively and negatively charged high-energy particles under an alternating current(AC)power source,effectively suppressing electroc... The bipolar ionic liquid thruster employs ionic liquid as a propellant to discharge positively and negatively charged high-energy particles under an alternating current(AC)power source,effectively suppressing electrochemical reaction and ensuring charge neutrality.Determining an optimal AC supply power source frequency is critical for sustained stable thruster operation.This study focuses on the emission characteristics of the ionic liquid thruster under varied AC conditions.The AC power supply was set within the frequency range of 0.5-64 Hz,with eight specific frequency conditions selected for experimentation.The experimental results indicate that the thruster operates steadily within a voltage range of±1470 to±1920 V,with corresponding positive polarity current ranging from 0.41 to 4.91μA and negative polarity current ranging from−0.49 to−4.10μA.During voltage polarity switching,an emission delay occurs,manifested as a prominent peak signal caused by circuit capacitance characteristics and a minor peak signal resulting from liquid droplets.Extended emission test was conducted at 16 Hz,demonstrating approximately 1 h and 50 min of consistent emission before intermittent discharge.These findings underscore the favorable impact of AC conditions within the 8-16 Hz range on the self-neutralization capability of the ionic liquid thruster. 展开更多
关键词 space electric propulsion ionic liquid thruster bipolar operation mode FREQUENCY
下载PDF
Ionic liquid derived electrocatalysts for electrochemical water splitting
8
作者 Tianhao Li Weihua Hu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期604-622,共19页
Hydrogen production from electrochemical water splitting is a promising strategy to generate green energy,which requires the development of efficient and stable electrocatalysts for the hydrogen evolution reaction and... Hydrogen production from electrochemical water splitting is a promising strategy to generate green energy,which requires the development of efficient and stable electrocatalysts for the hydrogen evolution reaction and the oxygen evolution reaction(HER and OER).Ionic liquids(ILs)or poly(ionic liquids)(PILs),containing heteroatoms,metal-based anions,and various structures,have been frequently involved as precursors to prepare electrocatalysts for water splitting.Moreover,ILs/PILs possess high conductivity,wide electrochemical windows,and high thermal and chemical stability,which can be directly applied in the electrocatalysis process with high durability.In this review,we focus on the studies of ILs/PILs-derived electrocatalysts for HER and OER,where ILs/PILs are applied as heteroatom dopants and metal precursors to prepare catalysts or are directly utilized as the electrocatalysts.Due to those attractive properties,IL/PIL-derived electrocatalysts exhibit excellent performance for electrochemical water splitting.All these accomplishments and developments are systematically summarized and thoughtfully discussed.Then,the overall perspectives for the current challenges and future developments of ILs/PILs-derived electrocatalysts are provided. 展开更多
关键词 Ionic liquid Electrochemical water splitting Hydrogen evolution reaction Oxygen evolution reaction
下载PDF
Ionic liquids as the effective technology for enhancing transdermal drug delivery: Design principles, roles, mechanisms, and future challenges
9
作者 Xuejun Chen Ziqing Li +1 位作者 Chunrong Yang Degong Yang 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2024年第2期38-51,共14页
Ionic liquids (ILs) have been proven to be an effective technology for enhancing drug transdermal absorption. However, due to the unique structural components of ILs, the design of efficient ILs and elucidation of act... Ionic liquids (ILs) have been proven to be an effective technology for enhancing drug transdermal absorption. However, due to the unique structural components of ILs, the design of efficient ILs and elucidation of action mechanisms remain to be explored. In this review, basic design principles of ideal ILs for transdermal drug delivery system (TDDS) are discussed considering melting point, skin permeability, and toxicity, which depend on the molar ratios, types, functional groups of ions and inter-ionic interactions. Secondly, the contributions of ILs to the development of TDDS through different roles are described: as novel skin penetration enhancers for enhancing transdermal absorption of drugs;as novel solvents for improving the solubility of drugs in carriers;as novel active pharmaceutical ingredients (API-ILs) for regulating skin permeability, solubility, release, and pharmacokinetic behaviors of drugs;and as novel polymers for the development of smart medical materials. Moreover, diverse action mechanisms, mainly including the interactions among ILs, drugs, polymers, and skin components, are summarized. Finally, future challenges related to ILs are discussed, including underlying quantitative structure-activity relationships, complex interaction forces between anions, drugs, polymers and skin microenvironment, long-term stability, and in vivo safety issues. In summary, this article will promote the development of TDDS based on ILs. 展开更多
关键词 Transdermal drug delivery system Ionic liquid Quantitative structure-activity relationship Intermolecular interaction
下载PDF
ENERGY CONSERVATION FOR THE WEAK SOLUTIONS TO THE 3D COMPRESSIBLE NEMATIC LIQUID CRYSTAL FLOW
10
作者 谭忠 李心亮 杨惠 《Acta Mathematica Scientia》 SCIE CSCD 2024年第3期851-864,共14页
In this paper,we establish some regularity conditions on the density and velocity fields to guarantee the energy conservation of the weak solutions for the three-dimensional compressible nematic liquid crystal flow in... In this paper,we establish some regularity conditions on the density and velocity fields to guarantee the energy conservation of the weak solutions for the three-dimensional compressible nematic liquid crystal flow in the periodic domain. 展开更多
关键词 compressible nematic liquid crystal flow weak solutions energy conservation
下载PDF
Wetting front migration model of ion-adsorption rare earth during the multi-hole unsaturated liquid injection
11
作者 Yu Wang Xiaojun Wang +8 位作者 Yuchen Qiu Hao Wang Gang Li Kaijian Hu Wen Zhong Zhongqun Guo Bing Li Chunlei Zhang Guangxiang Ye 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期483-496,共14页
In the process of ion-adsorption rare earth ore leaching,the migration characteristics of the wetting front in multi-hole injection holes and the influence of wetting front intersection effect on the migration distanc... In the process of ion-adsorption rare earth ore leaching,the migration characteristics of the wetting front in multi-hole injection holes and the influence of wetting front intersection effect on the migration distance of wetting fronts are still unclear.Besides,wetting front migration distance and leaching time are usually required to optimize the leaching process.In this study,wetting front migration tests of ionadsorption rare earth ores during the multi-hole fluid injection(the spacing between injection holes was 10 cm,12 cm and 14 cm)and single-hole fluid injection were completed under the constant water head height.At the pre-intersection stage,the wetting front migration laws of ion-adsorption rare earth ores during the multi-hole fluid injection and single-hole fluid injection were identical.At the postintersection stage,the intersection accelerated the wetting front migration.By using the Darcy’s law,the intersection effect of wetting fronts during the multi-hole liquid injection was transformed into the water head height directly above the intersection.Finally,based on the Green-Ampt model,a wetting front migration model of ion-adsorption rare earth ores during the multi-hole unsaturated liquid injection was established.Error analysis results showed that the proposed model can accurately simulate the infiltration process under experimental conditions.The research results enrich the infiltration law and theory of ion-adsorption rare earth ores during the multi-hole liquid injection,and this study provides a scientific basis for optimizing the liquid injection well pattern parameters of ion-adsorption rare earth in situ leaching in the future. 展开更多
关键词 Ion-adsorption rare earth ore Multi-hole unsaturated liquid injection In situ leaching Intersection effect Calculation model
下载PDF
Pairing nitroxyl radical and phenazine with electron-withdrawing/-donating substituents in “water-in-ionic liquid” for high-voltage aqueous redox flow batteries
12
作者 Zhifeng Huang Rolf Hempelmann +2 位作者 Yiqiong Zhang Li Tao Ruiyong Chen 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期713-722,共10页
Aqueous redox-active organic materials-base electrolytes are sustainable alternatives to vanadium-based electrolyte for redoxflow batteries(RFBs)due to the advantages of high ionic conductivity,environmentally benign,s... Aqueous redox-active organic materials-base electrolytes are sustainable alternatives to vanadium-based electrolyte for redoxflow batteries(RFBs)due to the advantages of high ionic conductivity,environmentally benign,safety and low cost.However,the underexplored redox properties of organic materials and the narrow thermodynamic electrolysis window of water(1.23 V)hinder their wide applications.Therefore,seeking suitable organic redox couples and aqueous electrolytes with a high output voltage is highly suggested for advancing the aqueous organic RFBs.In this work,the functionalized phenazine and nitroxyl radical with electron-donating and electron-withdrawing group exhibit redox potential of-0.88 V and 0.78 V vs.Ag,respectively,in“water-in-ionic liquid”supporting electrolytes.Raman spectra reveal that the activity of water is largely suppressed in“water-in-ionic liquid”due to the enhanced hydrogen bond interactions between ionic liquid and water,enabling an electrochemical stability window above 3 V.“Water-in-ionic liquid”supporting electrolytes help to shift redox potential of nitroxyl radical and enable the redox activity of functionalized phenazine.The assembled aqueous RFB allows a theoretical cell voltage of 1.66 V and shows a practical discharge voltage of 1.5 V in the“water-in-ionic liquid”electrolytes.Meanwhile,capacity retention of 99.91%per cycle is achieved over 500 charge/discharge cycles.A power density of 112 mW cm^(-2) is obtained at a current density of 30 mA cm^(-2).This work highlights the importance of rationally combining supporting electrolytes and organic molecules to achieve high-voltage aqueous RFBs. 展开更多
关键词 Aqueous redoxflow batteries Water-in-ionic liquid electrolytes High-voltage aqueous batteries Organic redox-active materials
下载PDF
Fine quantitative characterization of high-H2S gas reservoirs under the influence of liquid sulfur deposition and adsorption
13
作者 LI Tong MA Yongsheng +3 位作者 ZENG Daqian LI Qian ZHAO Guang SUN Ning 《Petroleum Exploration and Development》 SCIE 2024年第2期416-429,共14页
In order to clarify the influence of liquid sulfur deposition and adsorption to high-H2S gas reservoirs,three types of natural cores with typical carbonate pore structures were selected for high-temperature and high-p... In order to clarify the influence of liquid sulfur deposition and adsorption to high-H2S gas reservoirs,three types of natural cores with typical carbonate pore structures were selected for high-temperature and high-pressure core displacement experiments.Fine quantitative characterization of the cores in three steady states(original,after sulfur injection,and after gas flooding)was carried out using the nuclear magnetic resonance(NMR)transverse relaxation time spectrum and imaging,X-ray computer tomography(CT)of full-diameter cores,basic physical property testing,and field emission scanning electron microscopy imaging.The loss of pore volume caused by sulfur deposition and adsorption mainly comes from the medium and large pores with sizes bigger than 1000μm.Liquid sulfur has a stronger adsorption and deposition ability in smaller pore spaces,and causes greater damage to reservoirs with poor original pore structures.The pore structure of the three types of carbonate reservoirs shows multiple fractal characteristics.The worse the pore structure,the greater the change of internal pore distribution caused by liquid sulfur deposition and adsorption,and the stronger the heterogeneity.Liquid sulfur deposition and adsorption change the pore size distribution,pore connectivity,and heterogeneity of the rock,which further changes the physical properties of the reservoir.After sulfur injection and gas flooding,the permeability of TypeⅠreservoirs with good physical properties decreased by 16%,and that of TypesⅡandⅢreservoirs with poor physical properties decreased by 90%or more,suggesting an extremely high damage.This indicates that the worse the initial physical properties,the greater the damage of liquid sulfur deposition and adsorption.Liquid sulfur is adsorbed and deposited in different types of pore space in the forms of flocculence,cobweb,or retinitis,causing different changes in the pore structure and physical property of the reservoir. 展开更多
关键词 high-H2S gas reservoir liquid sulfur adsorption and deposition pore structure physical property reservoir characterization
下载PDF
A Novel Method for Determining the Void Fraction in Gas-Liquid Multi-Phase Systems Using a Dynamic Conductivity Probe
14
作者 Xiaochu Luo Xiaobing Qi +3 位作者 Zhao Luo Zhonghao Li Ruiquan Liao Xingkai Zhang 《Fluid Dynamics & Materials Processing》 EI 2024年第6期1233-1249,共17页
Conventional conductivity methods for measuring the void fraction in gas-liquid multiphase systems are typically affected by accuracy problems due to the presence of fluid flow and salinity.This study presents a novel... Conventional conductivity methods for measuring the void fraction in gas-liquid multiphase systems are typically affected by accuracy problems due to the presence of fluid flow and salinity.This study presents a novel approach for determining the void fraction based on a reciprocating dynamic conductivity probe used to measure the liquid film thickness under forced annular-flow conditions.The measurement system comprises a cyclone,a conductivity probe,a probe reciprocating device,and a data acquisition and processing system.This method ensures that the flow pattern is adjusted to a forced annular flow,thereby minimizing the influence of complex and variable gas-liquid flow patterns on the measurement results;Moreover,it determines the liquid film thickness solely according to circuit connectivity rather than specific conductivity values,thereby mitigating the impact of salinity.The reliability of the measurement system is demonstrated through laboratory experiments.The experimental results indicate that,in a range of gas phase superficial velocities 5–20 m/s and liquid phase superficial velocities 0.079–0.48 m/s,the maximum measurement deviation for the void fraction is 4.23%. 展开更多
关键词 Forced annular flow dynamic conductivity probe void fraction gas-liquid flow liquid film thickness
下载PDF
Method Development and Validation of the Simultaneous Analysis of Methylisothiazolinone, Methylchloroisothiazolinone, Benzisothiazolinone and Bronopol in Washing-Up Liquid
15
作者 Etienne Jooken Ruis Amery Boudewijn Meesschaert 《American Journal of Analytical Chemistry》 CAS 2024年第1期43-55,共13页
A method of analysis for the simultaneous determination of methylisothiazolinone (MI), methylchloroisothiazolinone (CMI), benzisothiazolinone (BIT) and Bronopol (BNP) in washing-up liquid was established. The method c... A method of analysis for the simultaneous determination of methylisothiazolinone (MI), methylchloroisothiazolinone (CMI), benzisothiazolinone (BIT) and Bronopol (BNP) in washing-up liquid was established. The method consisted of a gradient HPLC analysis at three different wavelengths. The four compounds could be analyzed with good precision and accuracy. 展开更多
关键词 PRESERVATIVES Analytical Validation METHYLISOTHIAZOLINONE Methylchloroisothiazolinone Benzisothiazolinone BRONOPOL HPLC Washing-Up liquid
下载PDF
New Insights into the Essential Reason of Liquid Foundation Darkening from the Powder Point of View
16
作者 Du Sinan Luo Huizhen +2 位作者 Qin Jihua Li Ping Pu Ke 《China Detergent & Cosmetics》 CAS 2024年第2期30-37,共8页
Perfect base makeup is the guarantee of exquisite makeup.However,the problem of base makeup darkening seriously affects the cosmetic effect,and also troubles many researchers and consumers.In this paper,a basic liquid... Perfect base makeup is the guarantee of exquisite makeup.However,the problem of base makeup darkening seriously affects the cosmetic effect,and also troubles many researchers and consumers.In this paper,a basic liquid foundation was chosen as model to explore the darkness reason from the aspects of foundation hue,volatility of emulsification system,and sebum secretion.DEcmc value determined by non-contact colorimeter was used to monitor the process of darkness.It’s widely accepted that foundation oxidation is key to darkness.We herein report a new insight into the essential reason of darkness due to the interaction between light and foundation.The red hue of the foundation darkened faster because the human eyes were more sensitive to the color difference of red.The volatility of foundation emulsion system and skin sebum secretion accelerated the foundation darkening process,which was caused by the change of foundation surface structure.Considering the above influencing factors,the formula was adjusted and an improved formula was proposed,which could significantly reduce the process of foundation darkening. 展开更多
关键词 liquid foundation darkening VOLATILITY SEBUM
下载PDF
Self-Healing Liquid Metal Magnetic Hydrogels for Smart Feedback Sensors and High-Performance Electromagnetic Shielding 被引量:6
17
作者 Biao Zhao Zhongyi Bai +8 位作者 Hualiang Lv Zhikai Yan Yiqian Du Xiaoqin Guo Jincang Zhang Limin Wu Jiushuai Deng David Wei Zhang Renchao Che 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第6期112-125,共14页
Hydrogels exhibit potential applications in smart wearable devices because of their exceptional sensitivity to various external stimuli.However,their applications are limited by challenges in terms of issues in biocom... Hydrogels exhibit potential applications in smart wearable devices because of their exceptional sensitivity to various external stimuli.However,their applications are limited by challenges in terms of issues in biocompatibility,custom shape,and self-healing.Herein,a conductive,stretchable,adaptable,self-healing,and biocompatible liquid metal GaInSn/Ni-based composite hydrogel is developed by incorporating a magnetic liquid metal into the hydrogel framework through crosslinking polyvinyl alcohol(PVA)with sodium tetraborate.The excellent stretchability and fast self-healing capability of the PVA/liquid metal hydrogel are derived from its abundant hydrogen binding sites and liquid metal fusion.Significantly,owing to the magnetic constituent,the PVA/liquid metal hydrogel can be guided remotely using an external magnetic field to a specific position to repair the broken wires with no need for manual operation.The composite hydrogel also exhibits sensitive deformation responses and can be used as a strain sensor to monitor various body motions.Additionally,the multifunctional hydrogel displays absorption-dominated electromagnetic interference(EMI)shielding properties.The total shielding performance of the composite hydrogel increases to~62.5 dB from~31.8 dB of the pure PVA hydrogel at the thickness of 3.0 mm.The proposed bioinspired multifunctional magnetic hydrogel demonstrates substantial application potential in the field of intelligent wearable devices. 展开更多
关键词 EMI shielding liquid metal HYDROGEL Self-healing properties Strain sensor Magnetic patterning
下载PDF
Ionic liquid electrolytes for sodium-ion batteries to control thermal runaway 被引量:2
18
作者 Keith Sirengo Aswathy Babu +1 位作者 Barry Brennan Suresh C.Pillai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期321-338,I0008,共19页
Sodium-ion batteries are expected to be more affordable for stationary applications than lithium-ion batteries,while still offering sufficient energy density and operational capacity to power a significant segment of ... Sodium-ion batteries are expected to be more affordable for stationary applications than lithium-ion batteries,while still offering sufficient energy density and operational capacity to power a significant segment of the battery market.Despite this,thermal runaway explosions associated with organic electrolytes have led to concerns regarding the safety of sodium-ion batteries.Among electrolytes,ionic liquids are promising because they have negligible vapor pressure and show high thermal and electrochemical stability.This review discusses the safety contributions of these electrolyte properties for high-temperature applications.The ionic liquids provide thermal stability while at the same time promoting high-voltage window battery operations.Moreover,apart from cycle stability,there is an additional safety feature attributed to modified ultra-concentrated ionic liquid electrolytes.Concerning these contributions,the following have been discussed,heat sources and thermal runaway mechanisms,thermal stability,the electrochemical decomposition mechanism of stable cations,and the ionic transport mechanism of ultra-concentrated ionic liquid electrolytes.In addition,the contributions of hybrid electrolyte systems consisting of ionic liquids with either organic carbonate or polymers are also discussed.The thermal stability of ionic liquids is found to be the main contributor to cell safety and cycle stability.For high-temperature applications where electrolyte safety,capacity,and cycle stability are important,highly concentrated ionic liquid electrolyte systems are potential solutions for sodium-ion battery applications. 展开更多
关键词 Thermal stability Ionic liquids Sodium-ion batteries Cycle stability Ionic conductivity
下载PDF
The opportunities and challenges of ionic liquids in perovskite solar cells 被引量:2
19
作者 Jian Yang Jianfei Hu +3 位作者 Wenhao Zhang Hongwei Han Yonghua Chen Yue Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期157-171,I0005,共16页
Metal halide perovskite solar cells(PSCs)have shown great potential to become the next generation of photovoltaic devices due to their simple fabrication techniques,low cost,and soaring power conversion efficiency(PCE... Metal halide perovskite solar cells(PSCs)have shown great potential to become the next generation of photovoltaic devices due to their simple fabrication techniques,low cost,and soaring power conversion efficiency(PCE).However,mismatched with the quickly updated PCEs,the improvement of device stability is challenging and still remains a critical hurdle in the path to commercialization.Recently,ionic liquids(ILs)have been found to play multiple roles in obtaining efficient and stable PSCs.These ILs usually consist of large organic cations and organic or inorganic anions,which have weak electrostatic attraction and are generally liquid at around 100℃.ILs are almost non-volatile,non-flammable,with high ionic conductivity and excellent thermal and electrochemical stability.The roles of ILs in PSCs vary with their composition,that is,the types of anions and cations.In this review,we summarize the roles of anions and cations in terms of precursor solutions,additives,perovskite/charge transport layer interface engineering,and charge transport layers.This article aims to set up a structure–property-stability-performance correlations conferred by the IL in PSC and provide assistance for the anion and cation selection for improving the quality of perovskite film,optimizing interface contact,reducing defect states,and improving charge extraction and transport characteristics.Finally,the application of IL in PSCs is discussed and prospected. 展开更多
关键词 Perovskite solar cells Ionic liquid Anions and cations Additive Interface engineering
下载PDF
Synthesis and kinetics of 2,5-dicyanofuran in the presence of hydroxylamine ionic liquid salts 被引量:2
20
作者 Xuan Gao Zhihui Li +2 位作者 Dongsheng Zhang Xinqiang Zhao Yanji Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期310-316,共7页
2,5-Dicyanofuran(DCF)is an important biomass-derived platform compound primarily used to prepare bio-based adiponitrile,which is the key precursor for the synthesis of nylon 66 and 1,6-hexanediisocyanate(HDI).In this ... 2,5-Dicyanofuran(DCF)is an important biomass-derived platform compound primarily used to prepare bio-based adiponitrile,which is the key precursor for the synthesis of nylon 66 and 1,6-hexanediisocyanate(HDI).In this study,one-pot,green and safe synthesis of DCF from 2,5-diformylfuran(DFF)and hydroxylamine ionic liquid salts was proposed.Eco-friendly hydroxylamine ionic liquid salts were used as the nitrogen source.Ionic liquid exhibited three-fold function of cosolvent,catalysis and phase separation.The conversion of DFF and yield of DCF reached 100%under the following optimum reaction conditions:temperature of 120℃ for 70 min,volume ratio of paraxylene:[HSO_(3)-b-Py]HSO4 of 2:1,and molar ratio of DFF:(NH_(2)OH)_(2)[HSO_(3)-b-Py]HSO4 of 1:1.5.The reaction mechanism for the synthesis of DCF was proposed,and the kinetic model was established.The reaction order with respect to DFF and intermediate product 2,5-diformylfuran dioxime(DFFD)was 1.06 and 0.16,and the reaction activation energy was 64.07 kJ·mol^(-1) and 59.37 kJ·mol^(-1) respectively.After the reaction,the ionic liquid was easy to separate,recover and recycle. 展开更多
关键词 2 5-Dicyanofuran Hydroxylamine ionic liquid salts Green synthesis KINETICS
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部