Cavitation occurs in the micro-clearance of liquid-hydrogen-lubricated bearings owing to the pressure drop caused by high-speed shearing.The pressure undulation caused by cavitation collapse results in bearing surface...Cavitation occurs in the micro-clearance of liquid-hydrogen-lubricated bearings owing to the pressure drop caused by high-speed shearing.The pressure undulation caused by cavitation collapse results in bearing surface erosion and significantly affects the bearing performance.In this study,a modified Z-G-B cavitation model was used to study the crushing process of a single liquid hydrogen bubble in a shear micro-clearance.Fast Fourier transform(FFT)and wavelet transform(WT)were applied to study the frequency characteristics of the pressure,mass transfer rate,and vapor mass fraction during bubble rupture in shearing micro-clearance.To obtain a deeper insight into the details of the effect of the shear micro-clearance structure on bubble collapse,the relationship between the flow field energy,attenuation rate,and frequency was investigated.The proper orthogonal decomposition(POD)and dynamic mode decomposition(DMD)methods were used to analyze the energy of each order mode of the flow field.The analysis results of the bubble vibration intensity with respect to time and frequency provide a theoretical basis for the optimization of the bearing structure.展开更多
Liquid hydrogen(LH2)attracts widespread attention because of its highest energy storage density.However,evaporation loss is a serious problem in LH2 storage due to the low boiling point(20 K).Efficient insulation tech...Liquid hydrogen(LH2)attracts widespread attention because of its highest energy storage density.However,evaporation loss is a serious problem in LH2 storage due to the low boiling point(20 K).Efficient insulation technology is an important issue in the study of LH2 storage.Hollow glass microspheres(HGMs)is a potential promising thermal insulation material because of its low apparent thermal conductivity,fast installation(Compared with multi-layer insulation,it can be injected in a short time.),and easy maintenance.A novel cryogenic insulation system consisting of HGMs and a selfevaporating vapor-cooled shield(VCS)is proposed for storage of LH2.A thermodynamic model has been established to analyze the coupled heat transfer characteristics of HGMs and VCS in the composite insulation system.The results show that the combination of HGMs and VCS can effectively reduce heat flux into the LH2 tank.With the increase of VCS number from 1 to 3,the minimum heat flux through HGMs decreases by 57.36%,65.29%,and 68.21%,respectively.Another significant advantage of HGMs is that their thermal insulation properties are not sensitive to ambient vacuum change.When ambient vacuum rises from 10^-3 Pa to 1 Pa,the heat flux into the LH2 tank increases by approximately 20%.When the vacuum rises from 10^-3 Pa to 100 Pa,the combination of VCS and HGMs reduces the heat flux into the tank by 58.08%-69.84% compared with pure HGMs.展开更多
Compared with liquid nitrogen(LN_(2))and water,the density of liquid hydrogen(LH_(2))is more than one order of magnitude smaller,which leads to significantly different flow-induced vibration characteristics in the cor...Compared with liquid nitrogen(LN_(2))and water,the density of liquid hydrogen(LH_(2))is more than one order of magnitude smaller,which leads to significantly different flow-induced vibration characteristics in the coriolis mass flowmeter(CMF).Based on the Euler beam theory,the complex set of equations of fluid-solid interactions for the U-type pipe Coriolis flowmeter with LH_(2)is solved.The calculation results are firstly validated by comparing the dimensionless frequency,displacement,and twist mode shape with the theoretical and experimental results in the other publications with water and kerosene as the working fluids.Then,the results of dimensionless frequency,phase difference,and time lag for LH_(2)are compared with those for LN_(2)and water,and the effects of the dimensionless flow velocity,sensor position,and the radius of the curved pipe are analyzed in detail for LH_(2).Results show that the time lag of LH_(2)is an order of magnitude smaller than that for LN_(2)or water.The excitation frequency for LH_(2)is much larger than that for LN_(2).Effects of geometric parameters on the time lag are also analyzed for the three fluids and the results contribute to the design optimization of a CMF for LH_(2).展开更多
Ultrasonic attenuation in liquid hydrogen has been messured with the pulse-echo technique as a function of temperature from 13.84K to 20.50K, at 45MHz . The results indicate that the temperature dependence of ultrason...Ultrasonic attenuation in liquid hydrogen has been messured with the pulse-echo technique as a function of temperature from 13.84K to 20.50K, at 45MHz . The results indicate that the temperature dependence of ultrasonic attenuation in liquid hydrogen is mainly determined by volume viscosity effect. Ultrasonic attenuatin due to volume viscosity is getting more and more with cooling. The ratio between volume viscous coefficient and shear viscous coefficient is from 1.4 to 4.2 within the measured temperature region.展开更多
The development of efficient hydrogen storage materials is one of the biggest technical challenges for the coming "hydrogen economy". The liquid organic hydrogen carriers (LOHCs) with high hydrogen contents, rever...The development of efficient hydrogen storage materials is one of the biggest technical challenges for the coming "hydrogen economy". The liquid organic hydrogen carriers (LOHCs) with high hydrogen contents, reversibilities and moderate dehydrogenation kinetics have been considered as an alternative option supplementing the extensively investigated inorganic hydride systems. In this review, LOHCs for long distance H2 transport and for onboard application will be discussed with the focuses of the design and development of LOHCs and their hydrogenation & dehydrogenation catalyses.展开更多
Hydrogen has been deemed as one of the most efficient energy carriers for a broad variety of industrial applications[1,2].Large-scale,low-cost hydrogen production,safe storage and delivery represent a tremendous techn...Hydrogen has been deemed as one of the most efficient energy carriers for a broad variety of industrial applications[1,2].Large-scale,low-cost hydrogen production,safe storage and delivery represent a tremendous technological challenge and have become a subject of intense research and development activities in the past few decades[3–5].展开更多
The kinetics of liquid-phase hydrogenation of toluene catalyzed by MlNi_5 was studied by investigating the influences of the reaction temperature and pressure on the mass transfer-reaction processes inside the slurry....The kinetics of liquid-phase hydrogenation of toluene catalyzed by MlNi_5 was studied by investigating the influences of the reaction temperature and pressure on the mass transfer-reaction processes inside the slurry. The results show that the reaction rate accelerates when the reaction temperature increases, and reaches its maximum at about 490 K, but if temperature is higher than 510 K, the reaction rate decreases rapidly. The whole reaction process is controlled by the reaction at the surface of the catalyst particles. The mass transfer resistance at gas-liquid interface and that from the bulk liquid phase to the surface of the catalyst particle can be neglected. The apparent reaction rate is zero order for toluene concentration and first order for hydrogen concentration in the liquid phase. The kinetic model is obtained. The kinetic model fits the experimental data very well. The apparent activation energy of the hydrogen absorption reaction of MlNi_5-toluene slurry system is 41.01 kJ·mol^(-1).展开更多
Two series of novel cholesteryl-containing H-bonded liquid crystals were prepared through facile self-assembly between cholesteryl isonicotinate (proton acceptor) exhibiting a monotropic cholesteric phase, and the 4...Two series of novel cholesteryl-containing H-bonded liquid crystals were prepared through facile self-assembly between cholesteryl isonicotinate (proton acceptor) exhibiting a monotropic cholesteric phase, and the 4-alkoxy-benzoic acid or 4-alkoxy cinnamic acid (proton donor). It was found that the increase of the conjugate length as well as the terminal length can contribute to enhance the interaction of molecules and thus significantly influenced the thermal behaviors of H-bonded LCs. The cholesteric reflection spectra of the induced mesogenic complexes were located in the visible region with the color tuneable thermo-sensitivity, which could be used for display application.展开更多
Low temperature coal tar contained a large amount of phenols, aromatic hydrocarbons and alkanes;the separation of phenols from coal tar has a great significance to the deep processing of coal tar. In this work, the se...Low temperature coal tar contained a large amount of phenols, aromatic hydrocarbons and alkanes;the separation of phenols from coal tar has a great significance to the deep processing of coal tar. In this work, the separation of m-cresol from cumene and n-heptane by liquid–liquid extraction using ionic liquids(ILs) as extractants was studied. The suitable ILs were screened by conductor-like screening model for real solvents(COSMO-RS)model and the liquid–liquid phase equilibrium(LLE) experiments were to verify the accuracy of the screening results. The extraction conditions such as extraction time, extraction temperature and mass ratio of ILs to model oils were evaluated. An internal mechanism of the m-cresol extract by ILs was revealed by COSMO-RS calculation and FT-IR. The results showed that the selected ILs can extract m-cresol effectively from cumene and nheptane, 1-ethyl-3-methylimidazolium acetate(emim CH3 COO) was the best extraction solvent. A hydrogen bond between anion of ILs and phenolic hydroxyl groups was observed. M-cresol in model oils could be extracted with extraction efficiencies up to 98.85% at an emim CH3 COO: model oils mass ratio of 0.5 and 298.15 K,emim CH3 COO could be regenerated and reused for 4 cycles without obvious decreases in extraction efficiency and extractant mass.展开更多
Efficient electrophilic substitution reaction of indoles with various aromatic aldehydes were carried out with a catalytic amount of sodium hydrogensulfate monohydrate (NaHSO4·H20) in ionic liquid n-butylpyridi...Efficient electrophilic substitution reaction of indoles with various aromatic aldehydes were carried out with a catalytic amount of sodium hydrogensulfate monohydrate (NaHSO4·H20) in ionic liquid n-butylpyridinium tetrafluoroborate ([Bpy]BF4) to afford the corresponding bi(indolyl)methanes in excellent yields. The notable advantages of this protocol in terms of low cost of catalyst and ionic liquid, mild conditions, simple operation, short reaction time, high yields and recycling of the ionic liquid.展开更多
Stability of borohydrides is determined by the localization of the negative charge on the boron atom.Ionic liquids(ILs) allow to modify the stability of the borohydrides and promote new dehydrogenation pathways with a...Stability of borohydrides is determined by the localization of the negative charge on the boron atom.Ionic liquids(ILs) allow to modify the stability of the borohydrides and promote new dehydrogenation pathways with a lower activation energy. The combination of borohydride and IL is very easy to realize and no expensive rare earth metals are required. The composite of the ILs with complex hydrides decreases the enthalpy and activation energy for the hydrogen desorption. The Coulomb interaction between borohydride and IL leads to a destabilization of the materials with a significantly lower enthalpy for hydrogen desorption. Here, we report a simple ion exchange reaction using various ILs, such as vinylbenzyltrimethylammonium chloride([VBTMA][Cl]), 1-butyl-3-methylimidazolium chloride([bmim][Cl]), and 1-ethyl-1-methylpyrrolidinium bromide([EMPY][Br]) with NaBH4 to decrease the hydrogen desorption temperature. Dehydrogenation of 1-butyl-3-methylimidazolium borohydride([bmim][BH4]) starts below 100℃. The quantity of desorbed hydrogen ranges between 2.4 wt% and 2.9 wt%, which is close to the theoretical content of hydrogen. The improvement in dehydrogenation is due to the strong amine cation that destabilizes borohydride by charge transfer.展开更多
A stable Sc phase is formed through hydrogen bonding between side-chain aromatic acid groups of polysiloxane: Bending of polysiloxane with N-Acetyl Latimic acid (NAA) gives a chiral S c * phase; The influence of polym...A stable Sc phase is formed through hydrogen bonding between side-chain aromatic acid groups of polysiloxane: Bending of polysiloxane with N-Acetyl Latimic acid (NAA) gives a chiral S c * phase; The influence of polymerism and hydrogen bond induction effect over mesophase is discussed. The influence of NAA over mesophase is studied.展开更多
The hydrogen content in aluminum melts at different temperature was detected. The structure in aluminum melts was investigated by molecular dynamics simulation. The first peak position of pair correlation function, at...The hydrogen content in aluminum melts at different temperature was detected. The structure in aluminum melts was investigated by molecular dynamics simulation. The first peak position of pair correlation function, atomic coordination number and viscosity of aluminum melts were calculated and they changed abnormally in the same temperature range. The mechanism of hydrogen absorption has been discussed. From molecular dynamics calculations, the interdependence between melt structural properties and hydrogen absorption were obtained.展开更多
Highly dispersed palladium nanoparticles were synthesized in the presence of immobilized ionic liquid on mesoporous silica SBA-15.PdNPs(2.4 nm)_me-Im@SBA-15 catalyst was prepared by the reduction using NaBH_4 as the r...Highly dispersed palladium nanoparticles were synthesized in the presence of immobilized ionic liquid on mesoporous silica SBA-15.PdNPs(2.4 nm)_me-Im@SBA-15 catalyst was prepared by the reduction using NaBH_4 as the reducing agent with controlled feed rate and has been investigated as ligand-free catalyst for Suzuki–Miyaura cross-coupling reaction at room temperature in aqueous solution under air.PdNPs catalyst was also prepared in situ from PdCl4_me-Im@SBA-15 during the reaction and demonstrated high activity and stability towards nitrobenzene hydrogenation at high temperature. Both catalysts were reusable at least for four recycle processes without significant loss in activity with simple procedure. The catalysts were characterized by TEM, EXAFS, FTIR and XPS.展开更多
Hydrogenation of N-ethylcarbazole(NEC),the hydrogen lean form of a liquid organic hydrogen carrier,on TiO2 supported Ru-Ni bimetallic catalysts is investigated.Crystal structure of TiO2 plays a critical role on the hy...Hydrogenation of N-ethylcarbazole(NEC),the hydrogen lean form of a liquid organic hydrogen carrier,on TiO2 supported Ru-Ni bimetallic catalysts is investigated.Crystal structure of TiO2 plays a critical role on the hydrogenation activity and selectivity towards fully hydrogenated product.Ru/anatase catalyst exhibits higher selectivity but lower reactivity compared to Ru/rutile catalyst.Ni addition significantly promotes the performance of Ru/anatase catalyst while causes severe performance deterioration of Ru/rutile catalyst.Commercial P25,a mixture of anatase and rutile phases in approximate ratio A/R1/4,is found to be the best TiO2 support for NEC hydrogenation.Ru/P25 catalyst outperforms both Ru/rutile and Ru/anatase and its activity can be further slightly improved by Ni addition.The unexpected synergism between the two different TiO2 phases for Ru based NEC hydrogenation catalysts is related to metal-support interaction and Ru-Ni interaction.展开更多
Au/FeOx-TiO2,prepared by deposition-precipitation method,is an efficient and stable catalyst for the liquid phase selective hydrogenation of phthalic anhydride to phthalide under mild reaction conditions.
Development of a predictive tool for H_2S solubility estimation can be very helpful in gas sweetening industry. Experimental databases on H_2 S solubility were rarely available, so as reliable predictive models. Thus,...Development of a predictive tool for H_2S solubility estimation can be very helpful in gas sweetening industry. Experimental databases on H_2 S solubility were rarely available, so as reliable predictive models. Thus, in this study the H_2 S solubility database was established, and then a Least-Squares Support Vector Machine(LSSVM) approach based on the established database is proposed. Group contribution method was also applied to eliminate the model's dependence on experimental data. Accordingly, our proposed LSSVM model can predict H_2 S solubility as a function of temperature, pressure, and 15 different chemical structures of Ionic liquids(ILs). Root Mean Square Error(RMSE) and coefficient of determination(R^2) are 0.0122 and 0.9941, respectively. Moreover, comparison of our model with other existing models showed its reliability for H_2 S solubility in ILs. This can be very useful for engineers dealing with gas sweetening process in different applications of analysis, simulation, and designation.展开更多
We report a nanocarbon material with nanodiamond(ND) core and graphene shell(ND@G) as a support for Pd nanocatalysts. The designed catalyst performed good selectivity of styrene(85.2%) at full conversion of phenylacet...We report a nanocarbon material with nanodiamond(ND) core and graphene shell(ND@G) as a support for Pd nanocatalysts. The designed catalyst performed good selectivity of styrene(85.2%) at full conversion of phenylacetylene and superior stability under mild conditions. Supported Pd catalysts are characterized by means of high resolution transmission electron microscopy(HRTEM), Raman, X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and H2 temperature-programmed reduction(H2-TPR).The results clearly show that formation of the strong metal-support interaction(SMSI) between Pd nanoclusters and the defective graphene shell helpfully modifies the selectivity and stability of the Pd-based catalysts.展开更多
Hydrogen storage in Liquid Organic Hydrogen Carrier(LOHC)systems is appealing for the safe storage and distribution of excess renewable energy via existing gasoline infrastructures to end-users.We present the eutectic...Hydrogen storage in Liquid Organic Hydrogen Carrier(LOHC)systems is appealing for the safe storage and distribution of excess renewable energy via existing gasoline infrastructures to end-users.We present the eutectic mixture of biphenyl and diphenyl ether of its first use as a LOHC material.The material is hydrogenated with 99%selectivity without the cleavage of C–O bond,with commercial heterogeneous catalysts,which is confirmed by nuclear magnetic spectroscopy and gas chromatography-mass spectrometry.Equilibrium concentration,dehydrogenation enthalpy,and thermo-neutral temperature are calculated using a density functional theory.The results indicate that O-atom-containing material exhibits more favorable dehydrogenation thermodynamics than that of the hydrocarbon analogue.The H2-rich material contains6.8 wt%of gravimetric hydrogen storage capacity.A preliminary study of catalytic dehydrogenation on a continuous reactor is presented to demonstrate a reversibility of this material.展开更多
Phenolic compounds exist in crude oil as pollutants, and their removal is vital important for the refining and further application of oils. In traditional separation approaches, strong acid and strong base have to be ...Phenolic compounds exist in crude oil as pollutants, and their removal is vital important for the refining and further application of oils. In traditional separation approaches, strong acid and strong base have to be used to remove these compounds, which may cause serious environmental problems. In this work, 19 kinds of cholinium ionic liquids have been developed to separate phenol from model oil by liquid–liquid extraction. Structural effect of anions of the ionic liquids in the separation is systematically investigated. It is found that depending on the chemical structure of ionic liquids, phenol can be removed from toluene with single-step removal efficiency from 86 to 99% under optimal conditions. The type of substituent groups and the-CH_2 number between two carboxylates have obvious effect on the removal efficiency, and more hydrophilic ionic liquids have a stronger extraction performance for phenol. Furthermore, thermodynamic,^(13) C NMR,~1 H NMR and density functional theory calculations have been performed to characterize the extraction process and to understand the extraction mechanism. It is shown that the extraction of phenol from oil to ionic liquid is a favorable process, and this process is mainly driven by enthalpy change. The formation of the hydrogen bond between anion of the ionic liquid and-OH of phenol is the main driving force for the extraction of phenol from oil to the ionic liquids.展开更多
基金National Natural Science Foundation of China(Grant No.:51976150)China Postdoctoral Science Foundation(Grant No.:2021M692533)Youth Innovation Team of Shaanxi Universities.
文摘Cavitation occurs in the micro-clearance of liquid-hydrogen-lubricated bearings owing to the pressure drop caused by high-speed shearing.The pressure undulation caused by cavitation collapse results in bearing surface erosion and significantly affects the bearing performance.In this study,a modified Z-G-B cavitation model was used to study the crushing process of a single liquid hydrogen bubble in a shear micro-clearance.Fast Fourier transform(FFT)and wavelet transform(WT)were applied to study the frequency characteristics of the pressure,mass transfer rate,and vapor mass fraction during bubble rupture in shearing micro-clearance.To obtain a deeper insight into the details of the effect of the shear micro-clearance structure on bubble collapse,the relationship between the flow field energy,attenuation rate,and frequency was investigated.The proper orthogonal decomposition(POD)and dynamic mode decomposition(DMD)methods were used to analyze the energy of each order mode of the flow field.The analysis results of the bubble vibration intensity with respect to time and frequency provide a theoretical basis for the optimization of the bearing structure.
基金This research was supported by the State Key Laboratory of Technologies in Space Cryogenic Propellants,China(Grant No.SKLTSCP1903)the National Natural Science Foundation of China(Grant Nos.51706233,51427806,and U1831203)+1 种基金the Strategic Pilot Projects in Space Science of China(Grant No.XDA15010400)the Key Research Program of Frontier Sciences of Chinese Academy of Sciences(Grant No.QYZDY-SSW-JSC028).
文摘Liquid hydrogen(LH2)attracts widespread attention because of its highest energy storage density.However,evaporation loss is a serious problem in LH2 storage due to the low boiling point(20 K).Efficient insulation technology is an important issue in the study of LH2 storage.Hollow glass microspheres(HGMs)is a potential promising thermal insulation material because of its low apparent thermal conductivity,fast installation(Compared with multi-layer insulation,it can be injected in a short time.),and easy maintenance.A novel cryogenic insulation system consisting of HGMs and a selfevaporating vapor-cooled shield(VCS)is proposed for storage of LH2.A thermodynamic model has been established to analyze the coupled heat transfer characteristics of HGMs and VCS in the composite insulation system.The results show that the combination of HGMs and VCS can effectively reduce heat flux into the LH2 tank.With the increase of VCS number from 1 to 3,the minimum heat flux through HGMs decreases by 57.36%,65.29%,and 68.21%,respectively.Another significant advantage of HGMs is that their thermal insulation properties are not sensitive to ambient vacuum change.When ambient vacuum rises from 10^-3 Pa to 1 Pa,the heat flux into the LH2 tank increases by approximately 20%.When the vacuum rises from 10^-3 Pa to 100 Pa,the combination of VCS and HGMs reduces the heat flux into the tank by 58.08%-69.84% compared with pure HGMs.
基金the Key R&D Plan Project of Zhejiang Province(Nos.2021C01099 and 2020C01029),China。
文摘Compared with liquid nitrogen(LN_(2))and water,the density of liquid hydrogen(LH_(2))is more than one order of magnitude smaller,which leads to significantly different flow-induced vibration characteristics in the coriolis mass flowmeter(CMF).Based on the Euler beam theory,the complex set of equations of fluid-solid interactions for the U-type pipe Coriolis flowmeter with LH_(2)is solved.The calculation results are firstly validated by comparing the dimensionless frequency,displacement,and twist mode shape with the theoretical and experimental results in the other publications with water and kerosene as the working fluids.Then,the results of dimensionless frequency,phase difference,and time lag for LH_(2)are compared with those for LN_(2)and water,and the effects of the dimensionless flow velocity,sensor position,and the radius of the curved pipe are analyzed in detail for LH_(2).Results show that the time lag of LH_(2)is an order of magnitude smaller than that for LN_(2)or water.The excitation frequency for LH_(2)is much larger than that for LN_(2).Effects of geometric parameters on the time lag are also analyzed for the three fluids and the results contribute to the design optimization of a CMF for LH_(2).
文摘Ultrasonic attenuation in liquid hydrogen has been messured with the pulse-echo technique as a function of temperature from 13.84K to 20.50K, at 45MHz . The results indicate that the temperature dependence of ultrasonic attenuation in liquid hydrogen is mainly determined by volume viscosity effect. Ultrasonic attenuatin due to volume viscosity is getting more and more with cooling. The ratio between volume viscous coefficient and shear viscous coefficient is from 1.4 to 4.2 within the measured temperature region.
基金supported by the Project of the National Natural Science Funds for Distinguished Young Scholar(51225206)Projects of the National Natural Science Foundation of China(grant nos.U1232120,51301161,21473181 and 51472237)
文摘The development of efficient hydrogen storage materials is one of the biggest technical challenges for the coming "hydrogen economy". The liquid organic hydrogen carriers (LOHCs) with high hydrogen contents, reversibilities and moderate dehydrogenation kinetics have been considered as an alternative option supplementing the extensively investigated inorganic hydride systems. In this review, LOHCs for long distance H2 transport and for onboard application will be discussed with the focuses of the design and development of LOHCs and their hydrogenation & dehydrogenation catalyses.
基金the financial support from the National Natural Science Foundation of China(Nos.21473164,21603195 and 21875225)Major project of Technical Innovation of Hubei Province(No.2017AAA126)the Fundamental Research Funds for Central Universities,China University of Geosciences(Wuhan)(Nos.CUGL170405 and CUG180604)。
文摘Hydrogen has been deemed as one of the most efficient energy carriers for a broad variety of industrial applications[1,2].Large-scale,low-cost hydrogen production,safe storage and delivery represent a tremendous technological challenge and have become a subject of intense research and development activities in the past few decades[3–5].
文摘The kinetics of liquid-phase hydrogenation of toluene catalyzed by MlNi_5 was studied by investigating the influences of the reaction temperature and pressure on the mass transfer-reaction processes inside the slurry. The results show that the reaction rate accelerates when the reaction temperature increases, and reaches its maximum at about 490 K, but if temperature is higher than 510 K, the reaction rate decreases rapidly. The whole reaction process is controlled by the reaction at the surface of the catalyst particles. The mass transfer resistance at gas-liquid interface and that from the bulk liquid phase to the surface of the catalyst particle can be neglected. The apparent reaction rate is zero order for toluene concentration and first order for hydrogen concentration in the liquid phase. The kinetic model is obtained. The kinetic model fits the experimental data very well. The apparent activation energy of the hydrogen absorption reaction of MlNi_5-toluene slurry system is 41.01 kJ·mol^(-1).
基金supported by National Natural Science foundation(No.20674005)Program of National High Technology 863 program of China(No.2006AA03Z108)Science and Technology Program of Beijing,China (No.Y0405004040121)
文摘Two series of novel cholesteryl-containing H-bonded liquid crystals were prepared through facile self-assembly between cholesteryl isonicotinate (proton acceptor) exhibiting a monotropic cholesteric phase, and the 4-alkoxy-benzoic acid or 4-alkoxy cinnamic acid (proton donor). It was found that the increase of the conjugate length as well as the terminal length can contribute to enhance the interaction of molecules and thus significantly influenced the thermal behaviors of H-bonded LCs. The cholesteric reflection spectra of the induced mesogenic complexes were located in the visible region with the color tuneable thermo-sensitivity, which could be used for display application.
基金Supported by the National Key Projects for Fundamental Research and Development of China(2016YFB0600305).
文摘Low temperature coal tar contained a large amount of phenols, aromatic hydrocarbons and alkanes;the separation of phenols from coal tar has a great significance to the deep processing of coal tar. In this work, the separation of m-cresol from cumene and n-heptane by liquid–liquid extraction using ionic liquids(ILs) as extractants was studied. The suitable ILs were screened by conductor-like screening model for real solvents(COSMO-RS)model and the liquid–liquid phase equilibrium(LLE) experiments were to verify the accuracy of the screening results. The extraction conditions such as extraction time, extraction temperature and mass ratio of ILs to model oils were evaluated. An internal mechanism of the m-cresol extract by ILs was revealed by COSMO-RS calculation and FT-IR. The results showed that the selected ILs can extract m-cresol effectively from cumene and nheptane, 1-ethyl-3-methylimidazolium acetate(emim CH3 COO) was the best extraction solvent. A hydrogen bond between anion of ILs and phenolic hydroxyl groups was observed. M-cresol in model oils could be extracted with extraction efficiencies up to 98.85% at an emim CH3 COO: model oils mass ratio of 0.5 and 298.15 K,emim CH3 COO could be regenerated and reused for 4 cycles without obvious decreases in extraction efficiency and extractant mass.
基金The project was supported by the National Natural Science Foundation of China (No. 20272018) the Guangdong Natural Science Foundation (No. 04010458, 021166).
文摘Efficient electrophilic substitution reaction of indoles with various aromatic aldehydes were carried out with a catalytic amount of sodium hydrogensulfate monohydrate (NaHSO4·H20) in ionic liquid n-butylpyridinium tetrafluoroborate ([Bpy]BF4) to afford the corresponding bi(indolyl)methanes in excellent yields. The notable advantages of this protocol in terms of low cost of catalyst and ionic liquid, mild conditions, simple operation, short reaction time, high yields and recycling of the ionic liquid.
基金part of the activities of SCCER HeE, which is financially supported by Innosuisse – Swiss Innovation Agency
文摘Stability of borohydrides is determined by the localization of the negative charge on the boron atom.Ionic liquids(ILs) allow to modify the stability of the borohydrides and promote new dehydrogenation pathways with a lower activation energy. The combination of borohydride and IL is very easy to realize and no expensive rare earth metals are required. The composite of the ILs with complex hydrides decreases the enthalpy and activation energy for the hydrogen desorption. The Coulomb interaction between borohydride and IL leads to a destabilization of the materials with a significantly lower enthalpy for hydrogen desorption. Here, we report a simple ion exchange reaction using various ILs, such as vinylbenzyltrimethylammonium chloride([VBTMA][Cl]), 1-butyl-3-methylimidazolium chloride([bmim][Cl]), and 1-ethyl-1-methylpyrrolidinium bromide([EMPY][Br]) with NaBH4 to decrease the hydrogen desorption temperature. Dehydrogenation of 1-butyl-3-methylimidazolium borohydride([bmim][BH4]) starts below 100℃. The quantity of desorbed hydrogen ranges between 2.4 wt% and 2.9 wt%, which is close to the theoretical content of hydrogen. The improvement in dehydrogenation is due to the strong amine cation that destabilizes borohydride by charge transfer.
文摘A stable Sc phase is formed through hydrogen bonding between side-chain aromatic acid groups of polysiloxane: Bending of polysiloxane with N-Acetyl Latimic acid (NAA) gives a chiral S c * phase; The influence of polymerism and hydrogen bond induction effect over mesophase is discussed. The influence of NAA over mesophase is studied.
基金Funded by the National Basic Research Program of China (No.2005CB623703)National Science Foundation for Distinguished Young Scholars of China (No. 50825401)
文摘The hydrogen content in aluminum melts at different temperature was detected. The structure in aluminum melts was investigated by molecular dynamics simulation. The first peak position of pair correlation function, atomic coordination number and viscosity of aluminum melts were calculated and they changed abnormally in the same temperature range. The mechanism of hydrogen absorption has been discussed. From molecular dynamics calculations, the interdependence between melt structural properties and hydrogen absorption were obtained.
基金the financial support from the Institute for Quantum Chemical Exploration(IQCE)
文摘Highly dispersed palladium nanoparticles were synthesized in the presence of immobilized ionic liquid on mesoporous silica SBA-15.PdNPs(2.4 nm)_me-Im@SBA-15 catalyst was prepared by the reduction using NaBH_4 as the reducing agent with controlled feed rate and has been investigated as ligand-free catalyst for Suzuki–Miyaura cross-coupling reaction at room temperature in aqueous solution under air.PdNPs catalyst was also prepared in situ from PdCl4_me-Im@SBA-15 during the reaction and demonstrated high activity and stability towards nitrobenzene hydrogenation at high temperature. Both catalysts were reusable at least for four recycle processes without significant loss in activity with simple procedure. The catalysts were characterized by TEM, EXAFS, FTIR and XPS.
基金NSFC (Nos. 21771006, U1607126 and 51771002)MOST of China (No. 2017YFB0405902)Beijing Municipal Commission of Science and Technology (Z17110000091702)
文摘Hydrogenation of N-ethylcarbazole(NEC),the hydrogen lean form of a liquid organic hydrogen carrier,on TiO2 supported Ru-Ni bimetallic catalysts is investigated.Crystal structure of TiO2 plays a critical role on the hydrogenation activity and selectivity towards fully hydrogenated product.Ru/anatase catalyst exhibits higher selectivity but lower reactivity compared to Ru/rutile catalyst.Ni addition significantly promotes the performance of Ru/anatase catalyst while causes severe performance deterioration of Ru/rutile catalyst.Commercial P25,a mixture of anatase and rutile phases in approximate ratio A/R1/4,is found to be the best TiO2 support for NEC hydrogenation.Ru/P25 catalyst outperforms both Ru/rutile and Ru/anatase and its activity can be further slightly improved by Ni addition.The unexpected synergism between the two different TiO2 phases for Ru based NEC hydrogenation catalysts is related to metal-support interaction and Ru-Ni interaction.
基金support provided by Zhejiang Provincial Natural Science Foundation of China(No.Y405108)the Department of Education of Zhejiang Province of China(No.20051409)
文摘Au/FeOx-TiO2,prepared by deposition-precipitation method,is an efficient and stable catalyst for the liquid phase selective hydrogenation of phthalic anhydride to phthalide under mild reaction conditions.
文摘Development of a predictive tool for H_2S solubility estimation can be very helpful in gas sweetening industry. Experimental databases on H_2 S solubility were rarely available, so as reliable predictive models. Thus, in this study the H_2 S solubility database was established, and then a Least-Squares Support Vector Machine(LSSVM) approach based on the established database is proposed. Group contribution method was also applied to eliminate the model's dependence on experimental data. Accordingly, our proposed LSSVM model can predict H_2 S solubility as a function of temperature, pressure, and 15 different chemical structures of Ionic liquids(ILs). Root Mean Square Error(RMSE) and coefficient of determination(R^2) are 0.0122 and 0.9941, respectively. Moreover, comparison of our model with other existing models showed its reliability for H_2 S solubility in ILs. This can be very useful for engineers dealing with gas sweetening process in different applications of analysis, simulation, and designation.
基金supported by the Ministry of Science and Technology (2016YFA0204100)the National Natural Science Foundation of China (21573254, 21703261 and 91545110)+2 种基金the Youth Innovation Promotion Association (CAS), and the Sinopec China and Strategic Priority Research Program of the Chinese Academy of Sciences (XDA09030103)the Chongqing Research Program of Basic Research and Frontier Technology (cstc2016jcyjA0432)Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJ1600328)
文摘We report a nanocarbon material with nanodiamond(ND) core and graphene shell(ND@G) as a support for Pd nanocatalysts. The designed catalyst performed good selectivity of styrene(85.2%) at full conversion of phenylacetylene and superior stability under mild conditions. Supported Pd catalysts are characterized by means of high resolution transmission electron microscopy(HRTEM), Raman, X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and H2 temperature-programmed reduction(H2-TPR).The results clearly show that formation of the strong metal-support interaction(SMSI) between Pd nanoclusters and the defective graphene shell helpfully modifies the selectivity and stability of the Pd-based catalysts.
基金supported by the Technology Development Program to Solve Climate Changes of the National Research Foundation(NRF)funded by the Ministry of Science,ICT,and Future Planning(2015M1A2A2074688)KISTI-HPC(KSC-2018-CRE-0022)for computational resourcesthe KIST institutional program funded by the Korea Institute of Science and Technology(2E29610).
文摘Hydrogen storage in Liquid Organic Hydrogen Carrier(LOHC)systems is appealing for the safe storage and distribution of excess renewable energy via existing gasoline infrastructures to end-users.We present the eutectic mixture of biphenyl and diphenyl ether of its first use as a LOHC material.The material is hydrogenated with 99%selectivity without the cleavage of C–O bond,with commercial heterogeneous catalysts,which is confirmed by nuclear magnetic spectroscopy and gas chromatography-mass spectrometry.Equilibrium concentration,dehydrogenation enthalpy,and thermo-neutral temperature are calculated using a density functional theory.The results indicate that O-atom-containing material exhibits more favorable dehydrogenation thermodynamics than that of the hydrocarbon analogue.The H2-rich material contains6.8 wt%of gravimetric hydrogen storage capacity.A preliminary study of catalytic dehydrogenation on a continuous reactor is presented to demonstrate a reversibility of this material.
基金supported by the National Natural Science Foundation of China(No.21803017,21733011)the National Key Research and Development Program of China(2017YFA0403101)+2 种基金S&T Research Foundation of Education Department of Henan Province(No.19A150027)the 111 project(No.D17007)the Open Research Fund of Shanghai Key Laboratory of Green Chemistry and Chemical Processes
文摘Phenolic compounds exist in crude oil as pollutants, and their removal is vital important for the refining and further application of oils. In traditional separation approaches, strong acid and strong base have to be used to remove these compounds, which may cause serious environmental problems. In this work, 19 kinds of cholinium ionic liquids have been developed to separate phenol from model oil by liquid–liquid extraction. Structural effect of anions of the ionic liquids in the separation is systematically investigated. It is found that depending on the chemical structure of ionic liquids, phenol can be removed from toluene with single-step removal efficiency from 86 to 99% under optimal conditions. The type of substituent groups and the-CH_2 number between two carboxylates have obvious effect on the removal efficiency, and more hydrophilic ionic liquids have a stronger extraction performance for phenol. Furthermore, thermodynamic,^(13) C NMR,~1 H NMR and density functional theory calculations have been performed to characterize the extraction process and to understand the extraction mechanism. It is shown that the extraction of phenol from oil to ionic liquid is a favorable process, and this process is mainly driven by enthalpy change. The formation of the hydrogen bond between anion of the ionic liquid and-OH of phenol is the main driving force for the extraction of phenol from oil to the ionic liquids.