This paper reviews studies on dissolution, derivatization, and nanomaterial processing of chitin using an ionic liquid as useful media. Because chitin is the second most abundant polysaccharide on the earth after cell...This paper reviews studies on dissolution, derivatization, and nanomaterial processing of chitin using an ionic liquid as useful media. Because chitin is the second most abundant polysaccharide on the earth after cellulose, there is major interest in conversion of native chitin resources into various useful materials after proper dissolution in suitable solvents. For the derivatization and nanomaterial processing of chitin, the author has been focusing on ionic liquids because which have been found to be used as good solvents for cellulose in a past decade. The author found that an ionic liquid, 1-allyl-3-methylimidazolium bromide (AMIMBr), dissolved chitin in concentrations up to 4.8 wt% and mixtures of the higher amounts of chitin with AMIMBr gave ion gels. Acetylation, the simplest derivatization, of chitin using acetic anhydride was achieved in the AMIMBr solvent under mild conditions. Furthermore, the chitin nanofibers were fabricated by regeneration technique from the chitin ion gel with AMIMBr using methanol. Moreover, filtration of the chitin nanofiber dispersion with methanol was carried out to give a chitin nanofiber film. The chitin nanofiber-poly(vinyl alcohol) composite film was also prepared from the ion gel by co-regeneration method.展开更多
Phase change materials(PCMs)are expected to achieve dual-mode thermal management for heating and cooling Li-ion batteries(LIBs)according to real-time thermal conditions,guaranteeing the reliable operation of LIBs in b...Phase change materials(PCMs)are expected to achieve dual-mode thermal management for heating and cooling Li-ion batteries(LIBs)according to real-time thermal conditions,guaranteeing the reliable operation of LIBs in both cold and hot environments.Herein,we report a liquid metal(LM)modified polyethylene glycol/LM/boron nitride PCM,capable of dual-mode thermal managing the LIBs through photothermal effect and passive thermal conduction.Its geometrical conformation and thermal pathways fabricated through ice-template strategy are conformable to the LIB’s structure and heat-conduction characteristic.Typically,soft and deformable LMs are modified on the boron nitride surface,serving as thermal bridges to reduce the contact thermal resistance among adjacent fillers to realize high thermal conductivity of 8.8 and 7.6 W m^(−1) K^(−1) in the vertical and in-plane directions,respectively.In addition,LM with excellent photothermal performance provides the PCM with efficient battery heating capability if employing a controllable lighting system.As a proof-of-concept,this PCM is manifested to heat battery to an appropriate temperature range in a cold environment and lower the working temperature of the LIBs by more than 10℃ at high charging/discharging rate,opening opportunities for LIBs with durable working performance and evitable risk of thermal runaway.展开更多
The serpentine tube liquid cooling and composite PCM coupled cooling thermal management system is designed for 18650 cylindrical power batteries,with the maximum temperature and temperature difference of the power pac...The serpentine tube liquid cooling and composite PCM coupled cooling thermal management system is designed for 18650 cylindrical power batteries,with the maximum temperature and temperature difference of the power pack within the optimal temperature operating range as the target.The initial analysis of the battery pack at a 5C discharge rate,the influence of the single cell to cooling tube distance,the number of cooling tubes,inlet coolant temperature,the coolant flow rate,and other factors on the heat dissipation performance of the battery pack,initially determined a reasonable value for each design parameter.A control strategy is used to regulate the inlet flow rate and coolant temperature of the liquid cooling system in order to make full use of the latent heat of the composite PCM and reduce the pump’s energy consumption.The simulation results show that the maximum battery pack temperature of 309.8 K and the temperature difference of 4.6 K between individual cells with the control strategy are in the optimal temperature operating range of the power battery,and the utilization rate of the composite PCM is up to 90%.展开更多
Cholesteric liquid crystals(CLCs) have recently sparked an enormous amount of interest in the development of soft matter materials due to their unique ability to self-organize into a helical supra-molecular architec...Cholesteric liquid crystals(CLCs) have recently sparked an enormous amount of interest in the development of soft matter materials due to their unique ability to self-organize into a helical supra-molecular architecture and their excellent selective reflection of light based on the Bragg relationship.Nowadays,by the virtue of building the self-organized nanostructures with pitch gradient or non-uniform pitch distribution,extensive work has already been performed to obtain CLC films with a broad reflection band.Based on authors' many years' research experience,this critical review systematically summarizes the physical and optical background of the CLCs with broadband reflection characteristics,methods to obtain broadband reflection of CLCs,as well as the application in the field of intelligent optical modulation materials.Combined with the research status and the advantages in the field,the important basic and applied scientific problems in the research direction are also introduced.展开更多
Wetting phenomenon occurring between liquid metals and solid materials is important in manytechnological processes involving a liquid phase. The fundamentals of wetting with the emphasis on metal-ce-ramic systems are ...Wetting phenomenon occurring between liquid metals and solid materials is important in manytechnological processes involving a liquid phase. The fundamentals of wetting with the emphasis on metal-ce-ramic systems are briefly described and various technologically important processes are analysed in relationwith liquid metal-solid wetting.展开更多
A new kind of material used in liquid cryogen cooler has been found and investigated in our group It is anticipated that the materials can be applied in the conditions of launching, rotation in any orientation and wei...A new kind of material used in liquid cryogen cooler has been found and investigated in our group It is anticipated that the materials can be applied in the conditions of launching, rotation in any orientation and weightlessness. The mechanism on which the material relies is similar to 'sponge' trapping the liquid cryogens within its micro-pores with surface tension. Preliminary tests have been performed on wicking. Also,we apply the materials to the cryogenic optical cooler whjch needs to be maintained within the temperuture range of 80-100 K. The results are satisfactory.展开更多
Water-triggered materials are receiving increasing attentions due to their diverse capabilities such as easy operation,soft actuation,low cost,environmental friendliness,and many more other advantages.However,most of ...Water-triggered materials are receiving increasing attentions due to their diverse capabilities such as easy operation,soft actuation,low cost,environmental friendliness,and many more other advantages.However,most of such materials generally have a long reaction time and require strict preservation conditions,which limit their adaptability in practice.In this study,a novel water-triggered material based on Al-NaOH-composited eutectic gallium–indium(eGaIn)alloys was proposed and demonstrated,which is rather fast-responsive and deformable.Once water is applied,the material thus fabricated would achieve a temperature rise of 40C in just several seconds along with gas production,indicating its big potential to be used as a thermal and pneumatic actuator.Further,the new material’s reusability and degradation ability were also tested.Following that,a double-layer-structure smart bandage was designed,whose bulk was filled with Al-NaOH-composited eGaIn while BiInSn served as outer supporting material.According to the experiments,a sheet structure with a thickness of 2 mm would support a weight of 1.8 kg after it was subjected to a cooling process,which is much better than the weight-bearing capability of fiberglass.In addition,a prototype of a water-triggered sphere robot was also fabricated using Al-NaOH-eGaIn,which realized rolling and bouncing behaviors under specific external stimulation.These findings indicate the potential value of the present material in developing future wearable devices,soft actuators,and soft robotics.展开更多
The biological intracellular vesicles, formed from the cell membrane or from different cell organelles, play a main role in the intracellular transport, transfer and exchange of molecules and information. Extracellula...The biological intracellular vesicles, formed from the cell membrane or from different cell organelles, play a main role in the intracellular transport, transfer and exchange of molecules and information. Extracellular vesicles are also detected in organisms belonging to any of the three main branches of evolution, Archaea, Bacteria and Eukarya. There is an increasing consensus that these vesicles are important mediators of intercellular communication. All the intracellular and extracellular vesicles present a characteristic lipid composition and organization that governs their formation, targeting and function. This paper gives an overview of the lipid chemical and physical structure, strongly related to their biological function. The properties and role of the different types of lipids from membranes and vesicles are described. Then, their physical structure is shown as self-associated in a bilayer and organized as a lyotropic liquid crystal. The present paper underlies the structural similarity between these biological vesicles and a new synthetic material, the “liquid crystalline fullerodendrimers” obtained from the biological model. It is composed of a basket of carbon associated with a liquid crystalline material and has been shown to exhibit highly efficient properties of information transfer. Our observation stresses the essential role of the liquid crystalline structure of lipids in their function as biological nanovehicles of information. The comparison with the synthetic material contributes to a better understanding of the role of lipids for cell communication in living organisms.展开更多
Electric double-layer capacitors(EDLCs) are emerging technologies to meet the ever-increasing demand for sustainable energy storage devices and systems in the 21 st Century owing to their advantages such as long lifet...Electric double-layer capacitors(EDLCs) are emerging technologies to meet the ever-increasing demand for sustainable energy storage devices and systems in the 21 st Century owing to their advantages such as long lifetime, fast charging speed and environmentally-friendly nature, which play a critical part in satisfying the demand of electronic devices and systems. Although it is generally accepted that EDLCs are suitable for working at low temperatures down to-40℃, there is a lack of comprehensive review to summarize the quantified performance of EDLCs when they are subjected to low-temperature environments. The rapid and growing demand for high-performance EDLCs for auxiliary power systems in the aeronautic and aerospace industries has triggered the urge to extend their operating temperature range,especially at temperatures below-40℃. This article presents an overview of EDLC’s performance and their challenges at extremely low temperatures including the capability of storing a considerable amount of electrical energy and maintaining long-term stability. The selection of electrolytes and electrode materials is crucial to the performance of EDLCs operating at a desired low-temperature range. Strategies to improve EDLC’s performance at extremely low temperatures are discussed, followed by the future perspectives to motivate more future studies to be conducted in this area.展开更多
Mine grouting reinforcement and water plugging projects often require large amounts of grouting materials.To reduce the carbon emission of grouting material production,improve the utilization of solid waste from minin...Mine grouting reinforcement and water plugging projects often require large amounts of grouting materials.To reduce the carbon emission of grouting material production,improve the utilization of solid waste from mining enterprises,and meet the needs of mine reinforcement and seepage control,a double-liquid grouting material containing a high admixture of coal gangue powder/bottom ash geopolymer was studied.The setting time,fluidity,bleeding rate,and mechanical properties of grouting materials were studied through laboratory tests,and SEM analyzed the microstructure of the materials.The results show that the total mixture of calcined gangue does not exceed 60%.And the proportion of bottom ash replacing cement should be within 30%.At the same time,the volume mixture of sodium silicate is 20%.And the water-solid ratio does not exceed 0.6.The stability of the slurry prepared under this ratio is good.The microstructure of the stone body is dense,and its strength can meet the requirements of rock reinforcement and seepage control.Its economic and environmental benefits are more significant than the traditional cement-silicate double-liquid grouting material.展开更多
By applying nanotechnology, a new type of silver/graphite (AgC) electricalcontact was fabricated and characterized. The AgC coating powders were obtained through high-energyball milling and reducer liquid spraying-coa...By applying nanotechnology, a new type of silver/graphite (AgC) electricalcontact was fabricated and characterized. The AgC coating powders were obtained through high-energyball milling and reducer liquid spraying-coating method. The as-prepared powders were examined bytransmission electron microscope (TEM), scanning electron microscope (SEM), and X-ray diffraction(XRD). The results show that the thickness of graphite flakes milled for 10 h is about 50-60 nm andthe AgC coating powders exhibit flocculent structure with quite fine and homogeneous internalmicropores. XRD implies that the average crystalline size of silver in coating powders is about 50nm. The mechanical and physical properties of this newly developed AgC contact made from theabove-mentioned nanocrystalline powders by traditional powder metallurgy technique were measured.Compared with its counterparts made from other techniques, the properties of this new AgC contacthave been optimized. High surface energy and high-energy interfaces of the nanocrystalline AgCcoating powders provide powerful driving force for sintering densification. Moreover, the flocculentstructure of the powders is also an important factor to acquire fine density ratio.展开更多
The polymerization of amphiphilic self assemblies is a promising method to synthesize nano structured materials with novel properties. These materials have many attractive features for their application in biomedica...The polymerization of amphiphilic self assemblies is a promising method to synthesize nano structured materials with novel properties. These materials have many attractive features for their application in biomedical area and materials science, such as catalysis, separation, surface modification, and therapeutics areas. A general review on the polymerization of lipids and surfactant self assemblies to amphiphilic self assemblies is given in this paper with 49 references. The polymerization and the subsequently resulted structure of lipids in different morphologies are summarized. The polymerization of polymerizable surfactants(surfmers) in emulsion and liquid crystalline phases are also discussed. The potential application of new nano porous materials is briefly described.展开更多
The liquid ion exchange method, solid salt melt method and dry-wet circulation method were used to prepare natural porous antimicrobial materials with natural minerals, such as zeolite, spilite, palygorskite and montm...The liquid ion exchange method, solid salt melt method and dry-wet circulation method were used to prepare natural porous antimicrobial materials with natural minerals, such as zeolite, spilite, palygorskite and montmorillonite, respectively. Atomic absorption spectrum and X-ray diffraction analysis were carried out to investigate the effects of Ag^+ , Cu^2+ and Zn^2+ on antimicrobial abilities of natural porous minerals, and the effect of preparation method on ion exchange capacity of antimicrobial material, respectively. The results show that for the ion exchange capacity, clay mineral is higher than fibrous mineral, i.e. both zeolite and montmorillonite are higher; the antimicrobial ability of material with Ag^+ is the bests the exchange capacities of materials with Cu^2+ or Zn^2+ are all higher, but the antimicrobial ability of Cu^2+ is better than that of Zn^2+ .展开更多
Developing advanced thermal interface materials(TIMs)to bridge heat-generating chip and heat sink for constructing an efficient heat transfer interface is the key technology to solve the thermal management issue of hi...Developing advanced thermal interface materials(TIMs)to bridge heat-generating chip and heat sink for constructing an efficient heat transfer interface is the key technology to solve the thermal management issue of high-power semiconductor devices.Based on the ultra-high basal-plane thermal conductivity,graphene is an ideal candidate for preparing high-performance TIMs,preferably to form a vertically aligned structure so that the basal-plane of graphene is consistent with the heat transfer direction of TIM.However,the actual interfacial heat transfer efficiency of currently reported vertically aligned graphene TIMs is far from satisfactory.In addition to the fact that the thermal conductivity of the vertically aligned TIMs can be further improved,another critical factor is the limited actual contact area leading to relatively high contact thermal resistance(20-30 K mm^(2) W^(−1))of the“solid-solid”mating interface formed by the vertical graphene and the rough chip/heat sink.To solve this common problem faced by vertically aligned graphene,in this work,we combined mechanical orientation and surface modification strategy to construct a three-tiered TIM composed of mainly vertically aligned graphene in the middle and micrometer-thick liquid metal as a cap layer on upper and lower surfaces.Based on rational graphene orientation regulation in the middle tier,the resultant graphene-based TIM exhibited an ultra-high thermal conductivity of 176 W m^(−1) K^(−1).Additionally,we demonstrated that the liquid metal cap layer in contact with the chip/heat sink forms a“liquid-solid”mating interface,significantly increasing the effective heat transfer area and giving a low contact thermal con-ductivity of 4-6 K mm^(2) W^(−1) under packaging conditions.This finding provides valuable guidance for the design of high-performance TIMs based on two-dimensional materials and improves the possibility of their practical application in electronic thermal management.展开更多
A new technique was introduced for sand stabilization and re-vegetation by use of lignin sand stabilizing material(LSSM). LSSM is a reconstructed organic compound with lignin as the most dominant component from the ex...A new technique was introduced for sand stabilization and re-vegetation by use of lignin sand stabilizing material(LSSM). LSSM is a reconstructed organic compound with lignin as the most dominant component from the extracts of black-liquor issued by straw pulp paper mills. Unlike the polyvinyl acetate or foamed asphalt commonly used for dune stabilization, the new material is plant-friendly and can be used with virescence actions simultaneously. The field experimental study was conducted since 2001 in China's Northwest Ningxia Hui Autonomous Region and has been proved that LSSM is effective in stabilizing the fugitive dunes, making the arenaceous plants survive and the bare dune vegetative. The advisable solution concentration is 2% and the optimal field spraying quantity is 2 5 L/m^2 The soil nutrients of the stabilized and greened dune, such as organic matter, available phosphorous and total nitrogen are all increased compared with the control treatment, which is certainly helpful to the growth of arenaceous plants. The technique is worthwhile to be popularized because it is provided not only a new method for desertification control but also an outlet for cleaning contaminants issued from the straw paper mills.展开更多
The traditional alumina-silicate raw materials, for example, clays, in the precalcining technique of cement production, have been replaced by low grade and high silica content sandstones, shales, and industrial waste ...The traditional alumina-silicate raw materials, for example, clays, in the precalcining technique of cement production, have been replaced by low grade and high silica content sandstones, shales, and industrial waste residues, including fly ashes, slag, and others. The results are the change of compositions and characteristics of raw materials applied and a great effect on cement calcination process and clinker formation. In this work, the cement clinker formation process of different alumina-silicate raw materials to replace clay raw material was studied by chemical analysis, X-ray diffraction, differential thermal analysis, and high temperature microscope based on the characteristics of the alumina-silicate raw materials. The formation heat of the clinker was determined by the acid dissolution method. Influence of different alumina-silicate raw materials on the clinker burnability and formation process was studied. The results show that the changing of alumina- silicate raw materials, especially using industrial waste residues, can reduce the formation temperature of high temperature liquid phases, improve the burnability of raw materials, reduce the formation temperature and formation heat of clinker. And this study also observed the formation temperature and transformation of high temperature liquid phases in the heating process of raw materials by high temperature microscope.展开更多
In this study,the interactions between a Ga-based liquid metal,GaInSn,and several metal materials,including pure metals(Ni and Ti)and alloys(316H stainless steel(SS)and GH3535),at 650℃were investigated.The aim was to...In this study,the interactions between a Ga-based liquid metal,GaInSn,and several metal materials,including pure metals(Ni and Ti)and alloys(316H stainless steel(SS)and GH3535),at 650℃were investigated.The aim was to evaluate the corrosion performance and select a suitable candidate material for use as a molten salt manometer diaphragm in thermal energy storage systems.The results indicated that the alloys(316H SS and GH3535)exhibited less corrosion than pure metals(Ni and Ti)in liquid GaInSn.Ga-rich binary intermetallic compounds were found to form on the surfaces of all the tested metal materials exposed to liquid GaInSn,as a result of the decomposition of liquid GaInSn and its reaction with the constituent elements of the metal materials.The corrosion mechanism for all the tested materials exposed to liquid GaInSn was also investigated and proposed,which may aid in selecting the optimal candidate material when liquid GaInSn is used as the pressure-sensing medium.展开更多
Recently,the family of rare-earth chalcohalides were proposed as candidate compounds to realize the Kitaev spin liquid(KSL)[Chin.Phys.Lett.38047502(2021)].In the present work,we firstly propose an effective spin Hamil...Recently,the family of rare-earth chalcohalides were proposed as candidate compounds to realize the Kitaev spin liquid(KSL)[Chin.Phys.Lett.38047502(2021)].In the present work,we firstly propose an effective spin Hamiltonian consistent with the symmetry group of the crystal structure.Then we apply classical Monte Carlo simulations to preliminarily study the model and establish a phase diagram.When approaching to the low temperature limit,several magnetic long range orders are observed,including the stripe,the zigzag,the antiferromagnetic(AFM),the ferromagnetic(FM),the incommensurate spiral(IS),the multi-Q,and the 120°ones.We further calculate the thermodynamic properties of the system,such as the temperature dependence of the magnetic susceptibility and the heat capacity.The ordering transition temperatures reflected in the two quantities agree with each other.For most interaction regions,the system is magnetically more susceptible in the ab-plane than in the c-direction.The stripe phase is special,where the susceptibility is fairly isotropic in the whole temperature region.These features provide useful information to understand the magnetic properties of related materials.展开更多
A one-step sintering process of bauxite raw material from direct mining was completed, and the kinetics of this process was analyzed thoroughly. The results show that the sintering kinetics of bauxite raw material exh...A one-step sintering process of bauxite raw material from direct mining was completed, and the kinetics of this process was analyzed thoroughly. The results show that the sintering kinetics of bauxite raw material exhibits the liquid-phase sintering behavior. A small portion of impurities existed in the raw material act as a liquid phase. After X-ray diffraction analyses, scanning electron microscopy observations, and kinetics calculations, sintering temperature and heating duration were determined as the two major factors contributing to the sintering process and densification of bauxite ore. An elevated heating temperature and longer duration favor the densification process. The major obstacle for the densification of bauxite material is attributed to the formation of the enclosed blowhole during liquid-phase sintering.展开更多
文摘This paper reviews studies on dissolution, derivatization, and nanomaterial processing of chitin using an ionic liquid as useful media. Because chitin is the second most abundant polysaccharide on the earth after cellulose, there is major interest in conversion of native chitin resources into various useful materials after proper dissolution in suitable solvents. For the derivatization and nanomaterial processing of chitin, the author has been focusing on ionic liquids because which have been found to be used as good solvents for cellulose in a past decade. The author found that an ionic liquid, 1-allyl-3-methylimidazolium bromide (AMIMBr), dissolved chitin in concentrations up to 4.8 wt% and mixtures of the higher amounts of chitin with AMIMBr gave ion gels. Acetylation, the simplest derivatization, of chitin using acetic anhydride was achieved in the AMIMBr solvent under mild conditions. Furthermore, the chitin nanofibers were fabricated by regeneration technique from the chitin ion gel with AMIMBr using methanol. Moreover, filtration of the chitin nanofiber dispersion with methanol was carried out to give a chitin nanofiber film. The chitin nanofiber-poly(vinyl alcohol) composite film was also prepared from the ion gel by co-regeneration method.
基金This work was financially supported by the National Natural Science Foundation of China(No.52103091)the Natural Science Foundation of Jiangsu Province(No.BK20200501)the State Key Laboratory of Polymer Materials Engineering(No.sklpme2022-3-15).
文摘Phase change materials(PCMs)are expected to achieve dual-mode thermal management for heating and cooling Li-ion batteries(LIBs)according to real-time thermal conditions,guaranteeing the reliable operation of LIBs in both cold and hot environments.Herein,we report a liquid metal(LM)modified polyethylene glycol/LM/boron nitride PCM,capable of dual-mode thermal managing the LIBs through photothermal effect and passive thermal conduction.Its geometrical conformation and thermal pathways fabricated through ice-template strategy are conformable to the LIB’s structure and heat-conduction characteristic.Typically,soft and deformable LMs are modified on the boron nitride surface,serving as thermal bridges to reduce the contact thermal resistance among adjacent fillers to realize high thermal conductivity of 8.8 and 7.6 W m^(−1) K^(−1) in the vertical and in-plane directions,respectively.In addition,LM with excellent photothermal performance provides the PCM with efficient battery heating capability if employing a controllable lighting system.As a proof-of-concept,this PCM is manifested to heat battery to an appropriate temperature range in a cold environment and lower the working temperature of the LIBs by more than 10℃ at high charging/discharging rate,opening opportunities for LIBs with durable working performance and evitable risk of thermal runaway.
基金support provided National Natural Science Foundation of China with Grant No.51976016Natural Science Foundation of Hunan Province,China with Grant No.2020JJ4616Research Foundation of Education Bureau of Hunan Province(18B149).
文摘The serpentine tube liquid cooling and composite PCM coupled cooling thermal management system is designed for 18650 cylindrical power batteries,with the maximum temperature and temperature difference of the power pack within the optimal temperature operating range as the target.The initial analysis of the battery pack at a 5C discharge rate,the influence of the single cell to cooling tube distance,the number of cooling tubes,inlet coolant temperature,the coolant flow rate,and other factors on the heat dissipation performance of the battery pack,initially determined a reasonable value for each design parameter.A control strategy is used to regulate the inlet flow rate and coolant temperature of the liquid cooling system in order to make full use of the latent heat of the composite PCM and reduce the pump’s energy consumption.The simulation results show that the maximum battery pack temperature of 309.8 K and the temperature difference of 4.6 K between individual cells with the control strategy are in the optimal temperature operating range of the power battery,and the utilization rate of the composite PCM is up to 90%.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51573006,51573003,51203003,51303008,51302006,51402006,51272026,and 51273022)the Major Project of Beijing Science and Technology Program,China(Grant Nos.Z151100003315023 and Z141100003814011)the Fok Ying Tung Education Foundation,China(Grant No.142009)
文摘Cholesteric liquid crystals(CLCs) have recently sparked an enormous amount of interest in the development of soft matter materials due to their unique ability to self-organize into a helical supra-molecular architecture and their excellent selective reflection of light based on the Bragg relationship.Nowadays,by the virtue of building the self-organized nanostructures with pitch gradient or non-uniform pitch distribution,extensive work has already been performed to obtain CLC films with a broad reflection band.Based on authors' many years' research experience,this critical review systematically summarizes the physical and optical background of the CLCs with broadband reflection characteristics,methods to obtain broadband reflection of CLCs,as well as the application in the field of intelligent optical modulation materials.Combined with the research status and the advantages in the field,the important basic and applied scientific problems in the research direction are also introduced.
文摘Wetting phenomenon occurring between liquid metals and solid materials is important in manytechnological processes involving a liquid phase. The fundamentals of wetting with the emphasis on metal-ce-ramic systems are briefly described and various technologically important processes are analysed in relationwith liquid metal-solid wetting.
文摘A new kind of material used in liquid cryogen cooler has been found and investigated in our group It is anticipated that the materials can be applied in the conditions of launching, rotation in any orientation and weightlessness. The mechanism on which the material relies is similar to 'sponge' trapping the liquid cryogens within its micro-pores with surface tension. Preliminary tests have been performed on wicking. Also,we apply the materials to the cryogenic optical cooler whjch needs to be maintained within the temperuture range of 80-100 K. The results are satisfactory.
基金the Key Program of National Natural Science foundation of China(91748206)。
文摘Water-triggered materials are receiving increasing attentions due to their diverse capabilities such as easy operation,soft actuation,low cost,environmental friendliness,and many more other advantages.However,most of such materials generally have a long reaction time and require strict preservation conditions,which limit their adaptability in practice.In this study,a novel water-triggered material based on Al-NaOH-composited eutectic gallium–indium(eGaIn)alloys was proposed and demonstrated,which is rather fast-responsive and deformable.Once water is applied,the material thus fabricated would achieve a temperature rise of 40C in just several seconds along with gas production,indicating its big potential to be used as a thermal and pneumatic actuator.Further,the new material’s reusability and degradation ability were also tested.Following that,a double-layer-structure smart bandage was designed,whose bulk was filled with Al-NaOH-composited eGaIn while BiInSn served as outer supporting material.According to the experiments,a sheet structure with a thickness of 2 mm would support a weight of 1.8 kg after it was subjected to a cooling process,which is much better than the weight-bearing capability of fiberglass.In addition,a prototype of a water-triggered sphere robot was also fabricated using Al-NaOH-eGaIn,which realized rolling and bouncing behaviors under specific external stimulation.These findings indicate the potential value of the present material in developing future wearable devices,soft actuators,and soft robotics.
文摘The biological intracellular vesicles, formed from the cell membrane or from different cell organelles, play a main role in the intracellular transport, transfer and exchange of molecules and information. Extracellular vesicles are also detected in organisms belonging to any of the three main branches of evolution, Archaea, Bacteria and Eukarya. There is an increasing consensus that these vesicles are important mediators of intercellular communication. All the intracellular and extracellular vesicles present a characteristic lipid composition and organization that governs their formation, targeting and function. This paper gives an overview of the lipid chemical and physical structure, strongly related to their biological function. The properties and role of the different types of lipids from membranes and vesicles are described. Then, their physical structure is shown as self-associated in a bilayer and organized as a lyotropic liquid crystal. The present paper underlies the structural similarity between these biological vesicles and a new synthetic material, the “liquid crystalline fullerodendrimers” obtained from the biological model. It is composed of a basket of carbon associated with a liquid crystalline material and has been shown to exhibit highly efficient properties of information transfer. Our observation stresses the essential role of the liquid crystalline structure of lipids in their function as biological nanovehicles of information. The comparison with the synthetic material contributes to a better understanding of the role of lipids for cell communication in living organisms.
基金the Australian Research Council for its support through the Discovery Project scheme (DP190103186)the Industrial Transformation Training Centre Scheme(IC180100005)。
文摘Electric double-layer capacitors(EDLCs) are emerging technologies to meet the ever-increasing demand for sustainable energy storage devices and systems in the 21 st Century owing to their advantages such as long lifetime, fast charging speed and environmentally-friendly nature, which play a critical part in satisfying the demand of electronic devices and systems. Although it is generally accepted that EDLCs are suitable for working at low temperatures down to-40℃, there is a lack of comprehensive review to summarize the quantified performance of EDLCs when they are subjected to low-temperature environments. The rapid and growing demand for high-performance EDLCs for auxiliary power systems in the aeronautic and aerospace industries has triggered the urge to extend their operating temperature range,especially at temperatures below-40℃. This article presents an overview of EDLC’s performance and their challenges at extremely low temperatures including the capability of storing a considerable amount of electrical energy and maintaining long-term stability. The selection of electrolytes and electrode materials is crucial to the performance of EDLCs operating at a desired low-temperature range. Strategies to improve EDLC’s performance at extremely low temperatures are discussed, followed by the future perspectives to motivate more future studies to be conducted in this area.
基金Funding Statement:The research described in this paper was financially supported by the National Natural Science Foundation of China(No.51974172)Innovation and Technology Program of Universities in Shandong Province,China(No.2020KJH001)+1 种基金National Natural Science Foundation of China(No.52274131)State Key Laboratory of Coal Mining and Clean Utilization(No.2021-CMCU-KF017).
文摘Mine grouting reinforcement and water plugging projects often require large amounts of grouting materials.To reduce the carbon emission of grouting material production,improve the utilization of solid waste from mining enterprises,and meet the needs of mine reinforcement and seepage control,a double-liquid grouting material containing a high admixture of coal gangue powder/bottom ash geopolymer was studied.The setting time,fluidity,bleeding rate,and mechanical properties of grouting materials were studied through laboratory tests,and SEM analyzed the microstructure of the materials.The results show that the total mixture of calcined gangue does not exceed 60%.And the proportion of bottom ash replacing cement should be within 30%.At the same time,the volume mixture of sodium silicate is 20%.And the water-solid ratio does not exceed 0.6.The stability of the slurry prepared under this ratio is good.The microstructure of the stone body is dense,and its strength can meet the requirements of rock reinforcement and seepage control.Its economic and environmental benefits are more significant than the traditional cement-silicate double-liquid grouting material.
基金This work was financially supported by the National Natural Science Foundation of China (No. 50071029).
文摘By applying nanotechnology, a new type of silver/graphite (AgC) electricalcontact was fabricated and characterized. The AgC coating powders were obtained through high-energyball milling and reducer liquid spraying-coating method. The as-prepared powders were examined bytransmission electron microscope (TEM), scanning electron microscope (SEM), and X-ray diffraction(XRD). The results show that the thickness of graphite flakes milled for 10 h is about 50-60 nm andthe AgC coating powders exhibit flocculent structure with quite fine and homogeneous internalmicropores. XRD implies that the average crystalline size of silver in coating powders is about 50nm. The mechanical and physical properties of this newly developed AgC contact made from theabove-mentioned nanocrystalline powders by traditional powder metallurgy technique were measured.Compared with its counterparts made from other techniques, the properties of this new AgC contacthave been optimized. High surface energy and high-energy interfaces of the nanocrystalline AgCcoating powders provide powerful driving force for sintering densification. Moreover, the flocculentstructure of the powders is also an important factor to acquire fine density ratio.
基金Supported by National Natural Science Foundation(No.0 5 1730 0 3) Beijing Science and Technology New Star Program(No.H0 10 4 10 0 10 112 ) and Im portant Natural Science Foundation of Beijing(No.2 0 310 0 1) .
文摘The polymerization of amphiphilic self assemblies is a promising method to synthesize nano structured materials with novel properties. These materials have many attractive features for their application in biomedical area and materials science, such as catalysis, separation, surface modification, and therapeutics areas. A general review on the polymerization of lipids and surfactant self assemblies to amphiphilic self assemblies is given in this paper with 49 references. The polymerization and the subsequently resulted structure of lipids in different morphologies are summarized. The polymerization of polymerizable surfactants(surfmers) in emulsion and liquid crystalline phases are also discussed. The potential application of new nano porous materials is briefly described.
文摘The liquid ion exchange method, solid salt melt method and dry-wet circulation method were used to prepare natural porous antimicrobial materials with natural minerals, such as zeolite, spilite, palygorskite and montmorillonite, respectively. Atomic absorption spectrum and X-ray diffraction analysis were carried out to investigate the effects of Ag^+ , Cu^2+ and Zn^2+ on antimicrobial abilities of natural porous minerals, and the effect of preparation method on ion exchange capacity of antimicrobial material, respectively. The results show that for the ion exchange capacity, clay mineral is higher than fibrous mineral, i.e. both zeolite and montmorillonite are higher; the antimicrobial ability of material with Ag^+ is the bests the exchange capacities of materials with Cu^2+ or Zn^2+ are all higher, but the antimicrobial ability of Cu^2+ is better than that of Zn^2+ .
基金flnancial support by the National Natural Science Foundation of China (52102055, 5227020331, 52075527)National Key R&D Program of China (2017YFB0406000 and 2017YFE0128600)+8 种基金the Project of the Chinese Academy of Sciences (XDC07030100, XDA22020602, ZDKYYQ20200001 and ZDRW-CN-2019-3)CAS Youth Innovation Promotion Association (2020301)Science and Technology Major Project of Ningbo (2021Z120, 2021Z115, 2022Z084, 2018B10046 and 2016S1002)the Natural Science Foundation of Ningbo (2017A610010)Foundation of State Key Laboratory of Solid lubrication (LSL-1912)China Postdoctoral Science Foundation (2020M681965, 2022M713243)National Key Laboratory of Science and Technology on Advanced Composites in Special Environments (6142905192806)K.C. Wong Education Foundation (GJTD-2019-13)the 3315 Program of Ningbo for financial support
文摘Developing advanced thermal interface materials(TIMs)to bridge heat-generating chip and heat sink for constructing an efficient heat transfer interface is the key technology to solve the thermal management issue of high-power semiconductor devices.Based on the ultra-high basal-plane thermal conductivity,graphene is an ideal candidate for preparing high-performance TIMs,preferably to form a vertically aligned structure so that the basal-plane of graphene is consistent with the heat transfer direction of TIM.However,the actual interfacial heat transfer efficiency of currently reported vertically aligned graphene TIMs is far from satisfactory.In addition to the fact that the thermal conductivity of the vertically aligned TIMs can be further improved,another critical factor is the limited actual contact area leading to relatively high contact thermal resistance(20-30 K mm^(2) W^(−1))of the“solid-solid”mating interface formed by the vertical graphene and the rough chip/heat sink.To solve this common problem faced by vertically aligned graphene,in this work,we combined mechanical orientation and surface modification strategy to construct a three-tiered TIM composed of mainly vertically aligned graphene in the middle and micrometer-thick liquid metal as a cap layer on upper and lower surfaces.Based on rational graphene orientation regulation in the middle tier,the resultant graphene-based TIM exhibited an ultra-high thermal conductivity of 176 W m^(−1) K^(−1).Additionally,we demonstrated that the liquid metal cap layer in contact with the chip/heat sink forms a“liquid-solid”mating interface,significantly increasing the effective heat transfer area and giving a low contact thermal con-ductivity of 4-6 K mm^(2) W^(−1) under packaging conditions.This finding provides valuable guidance for the design of high-performance TIMs based on two-dimensional materials and improves the possibility of their practical application in electronic thermal management.
文摘A new technique was introduced for sand stabilization and re-vegetation by use of lignin sand stabilizing material(LSSM). LSSM is a reconstructed organic compound with lignin as the most dominant component from the extracts of black-liquor issued by straw pulp paper mills. Unlike the polyvinyl acetate or foamed asphalt commonly used for dune stabilization, the new material is plant-friendly and can be used with virescence actions simultaneously. The field experimental study was conducted since 2001 in China's Northwest Ningxia Hui Autonomous Region and has been proved that LSSM is effective in stabilizing the fugitive dunes, making the arenaceous plants survive and the bare dune vegetative. The advisable solution concentration is 2% and the optimal field spraying quantity is 2 5 L/m^2 The soil nutrients of the stabilized and greened dune, such as organic matter, available phosphorous and total nitrogen are all increased compared with the control treatment, which is certainly helpful to the growth of arenaceous plants. The technique is worthwhile to be popularized because it is provided not only a new method for desertification control but also an outlet for cleaning contaminants issued from the straw paper mills.
基金Funded by the National Basic Research Program of China("973"Program)(No.2009CB623102)the National High Technology Research and Development Program of China("863"Program)(No.2013AA031602)
文摘The traditional alumina-silicate raw materials, for example, clays, in the precalcining technique of cement production, have been replaced by low grade and high silica content sandstones, shales, and industrial waste residues, including fly ashes, slag, and others. The results are the change of compositions and characteristics of raw materials applied and a great effect on cement calcination process and clinker formation. In this work, the cement clinker formation process of different alumina-silicate raw materials to replace clay raw material was studied by chemical analysis, X-ray diffraction, differential thermal analysis, and high temperature microscope based on the characteristics of the alumina-silicate raw materials. The formation heat of the clinker was determined by the acid dissolution method. Influence of different alumina-silicate raw materials on the clinker burnability and formation process was studied. The results show that the changing of alumina- silicate raw materials, especially using industrial waste residues, can reduce the formation temperature of high temperature liquid phases, improve the burnability of raw materials, reduce the formation temperature and formation heat of clinker. And this study also observed the formation temperature and transformation of high temperature liquid phases in the heating process of raw materials by high temperature microscope.
基金supported by the National Natural Science Foundation of China(Nos.12005289 and 52071331)the National Key R&D Program of China(No.2019YFA0210000)the State Key Laboratory of Nuclear Detection and Electronics,University of Science and Technology of China(No.SKLPDE-KF-202316)。
文摘In this study,the interactions between a Ga-based liquid metal,GaInSn,and several metal materials,including pure metals(Ni and Ti)and alloys(316H stainless steel(SS)and GH3535),at 650℃were investigated.The aim was to evaluate the corrosion performance and select a suitable candidate material for use as a molten salt manometer diaphragm in thermal energy storage systems.The results indicated that the alloys(316H SS and GH3535)exhibited less corrosion than pure metals(Ni and Ti)in liquid GaInSn.Ga-rich binary intermetallic compounds were found to form on the surfaces of all the tested metal materials exposed to liquid GaInSn,as a result of the decomposition of liquid GaInSn and its reaction with the constituent elements of the metal materials.The corrosion mechanism for all the tested materials exposed to liquid GaInSn was also investigated and proposed,which may aid in selecting the optimal candidate material when liquid GaInSn is used as the pressure-sensing medium.
基金Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0302904 and 2016YFA0300504)the National Natural Science Foundation of China (Grant Nos. U1932215, 11774419, 11574392, and 11974421)+4 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33010100)the Fundamental Research Funds for the Central Universities,Chinathe Research Funds of Renmin University of China (Grant No. 19XNLG11)the support from Users with Excellence Program of Hefei Science CenterHigh Magnetic Field Facility,CAS
文摘Recently,the family of rare-earth chalcohalides were proposed as candidate compounds to realize the Kitaev spin liquid(KSL)[Chin.Phys.Lett.38047502(2021)].In the present work,we firstly propose an effective spin Hamiltonian consistent with the symmetry group of the crystal structure.Then we apply classical Monte Carlo simulations to preliminarily study the model and establish a phase diagram.When approaching to the low temperature limit,several magnetic long range orders are observed,including the stripe,the zigzag,the antiferromagnetic(AFM),the ferromagnetic(FM),the incommensurate spiral(IS),the multi-Q,and the 120°ones.We further calculate the thermodynamic properties of the system,such as the temperature dependence of the magnetic susceptibility and the heat capacity.The ordering transition temperatures reflected in the two quantities agree with each other.For most interaction regions,the system is magnetically more susceptible in the ab-plane than in the c-direction.The stripe phase is special,where the susceptibility is fairly isotropic in the whole temperature region.These features provide useful information to understand the magnetic properties of related materials.
基金financially supported by the National Natural Science Foundation of China (No. 51402016)the Fundamental Research Funds for the Central Universities (No. FRF-TP-15-008A2)
文摘A one-step sintering process of bauxite raw material from direct mining was completed, and the kinetics of this process was analyzed thoroughly. The results show that the sintering kinetics of bauxite raw material exhibits the liquid-phase sintering behavior. A small portion of impurities existed in the raw material act as a liquid phase. After X-ray diffraction analyses, scanning electron microscopy observations, and kinetics calculations, sintering temperature and heating duration were determined as the two major factors contributing to the sintering process and densification of bauxite ore. An elevated heating temperature and longer duration favor the densification process. The major obstacle for the densification of bauxite material is attributed to the formation of the enclosed blowhole during liquid-phase sintering.