A research on kinetics of Al evaporation from liquid U—Al alloys was made in a vacuum induction melting(VIM) furnace at 1673—1843 K.The evaporation rate of Al was found to be first order with respect to Al content...A research on kinetics of Al evaporation from liquid U—Al alloys was made in a vacuum induction melting(VIM) furnace at 1673—1843 K.The evaporation rate of Al was found to be first order with respect to Al content in the melt.The overall mass transfer coefficient of Al was determined and it was found that the evaporation rate of Al increased with increasing temperatures.The apparent activation energy of Al evaporation at 1673-1843 K was 171.5 kJ mol-1.The value of mass transfer coefficient of Al in the liquid phase was estimated to be 3.77 × 10-6,7.41×10-6,and 9.40 × 10-6m s-1at 1673,1753,and 1843 K,respectively.Meanwhile,rate determining steps were discussed and it was concluded that the evaporation rate of Al is mainly controlled by liquid phase mass transfer.展开更多
Cu 71Al 25Ni 4 (mole fraction,%) shape memory alloy ribbons exhibit a good shape memory effect, which were prepared by melt-spinning technique. The microstructure of the as-spun ribbons was identified by D/Max-rA X-ra...Cu 71Al 25Ni 4 (mole fraction,%) shape memory alloy ribbons exhibit a good shape memory effect, which were prepared by melt-spinning technique. The microstructure of the as-spun ribbons was identified by D/Max-rA X-ray diffractometer. The order degree of martensite increases with decreasing liquid quenching temperature at the same quenching rate. The liquid structure of Cu 75Al 25 and Cu 71Al 25Ni 4 was investigated using X-ray diffraction method. The distinct pre-peaks have been found in front of main peaks of the structure factors. The pre-peak increases intensity with decreasing temperature or adding Ni. Gaussian peaks decomposing radial distribution function (RDF) indicated that Cu-Al distance is anomalously short. These results suggest that a strong interaction between Cu and Al is favorable to form β-phase-like clusters, which leads to chemical medium-range ordering in melt. This promotes formation of order martensite and suppresses γ 2-phase precipitation.展开更多
It is difficult to directly electroplate Al on Mg alloys. The effects of pretreatment parameters on the corrosion resistance of films obtained on AZ31 Mg alloy surface were studied by using potentiodynamic polarizatio...It is difficult to directly electroplate Al on Mg alloys. The effects of pretreatment parameters on the corrosion resistance of films obtained on AZ31 Mg alloy surface were studied by using potentiodynamic polarization curves, to produce a compact interfacial layer as zinc-immersion deposition. After the substrate was pretreated under optimized conditions, aluminum was electrodeposited on AZ31 from TMPAC-AlCl3 room temperature ionic liquids. The depositions were characterized by scanning electron microscope equipped with energy dispersion X-ray. The results show that the traditional pretreatment of Mg alloys was successfully used for the Al-electroplating process from TMPAC-AlCl3 ionic liquids. The entire procedure includes alkaline cleaning, chemical pickling, surface activation (400 mL/L HF acid, 10 min), zinc-immersion (20 min) and anhydrous treatment. A relatively compact zinc-immersion film was prepared on the substrate surface. A silvery-colored satin aluminum deposition was obtained on AZ31 from TMPAC-AlCl3 using direct current plating.展开更多
The electrodeposition of A1 and A1-Cu binary alloys on to gold substrates from a room temperature ionic liquid electrolyte containing A1C13-EtaNHC1 was studied. The electrochemical behavior of the electrolyte and the ...The electrodeposition of A1 and A1-Cu binary alloys on to gold substrates from a room temperature ionic liquid electrolyte containing A1C13-EtaNHC1 was studied. The electrochemical behavior of the electrolyte and the mechanism of deposition were investigated through cyclic voltammetry (CV), and the properties of deposits obtained were assessed by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) and X-ray diffraction (XRD). A1 of 70μm in thickness and an A1-Cu alloy of 30μm in thickness with 8at% copper were deposited from the electrolyte. SEM images of the deposits indicate that the A1 deposit was smooth and uniform, whereas the Al-Cu deposit was nodular. The average crystalline size, as determined by XRD patterns, was found to be (30±5) and (29±5) nm, respectively, for A1 and A1-Cu alloys. Potentiodynamic polarization (Tafel plots) and electrochemical impedance spectroscopic (EIS) measurements showed that Al-Cu alloys are more corrosion resistant than Al.展开更多
The surface liquid segregation(SLS) phenomenon in semi-solid metal-high pressure die casting(SSM-HPDC) plates of 7075,2024,6082 and A201 was investigated by different techniques.Depth profiles were determined by first...The surface liquid segregation(SLS) phenomenon in semi-solid metal-high pressure die casting(SSM-HPDC) plates of 7075,2024,6082 and A201 was investigated by different techniques.Depth profiles were determined by firstly measuring the chemical composition of the surface of the plates using a Thermo Quantris optical emission spectrometer(OES).Material was then removed by a grinding process followed by measurement of the amount of material removed and chemical analysis.Chemical profiles of the main alloying elements were plotted for the cross-section of the plates in the as-cast and T6(after solution treatment) temper conditions.Vickers hardness profiles from the surface to the centre of the plates were determined.Metallographic samples of cross-sections of the castings were prepared and evaluated using a scanning electron microscope.The results show that surface liquid segregation in SSM-HPDC alloys causes significant differences in properties between the surface and the bulk of these castings in both the F and T6 temper conditions.展开更多
During the process of liquid forging, a host of hot cracking defects were found in the Al-CuMg-Zn aluminum alloy. Therefore, mechanical tests and analyses by optical microscope, scanning electron microscope, and X-ray...During the process of liquid forging, a host of hot cracking defects were found in the Al-CuMg-Zn aluminum alloy. Therefore, mechanical tests and analyses by optical microscope, scanning electron microscope, and X-ray diffraction were performed to research the influences of zinc, magnesium, and copper(three main alloying elements) on hot cracking tendency and mechanical properties. It was concluded that all the three alloying elements exerted different effects on the performances of newly designed alloys. And the impact of microstructures on properties of alloys was stronger than that of solution strengthening. Among new alloys, Al-5 Cu-4.5 Mg-2.5 Zn alloy shows better properties as follows: σb=327 MPa, δ=2.7%, HB=107 N/mm^2, and HCS=40.展开更多
The mixing enthalpies of 23 binary liquid alloys are calculated by molecular interaction volume model (MIVM), which is a two-parameter model with the partial molar infinite dilute mixing enthalpies. The predicted va...The mixing enthalpies of 23 binary liquid alloys are calculated by molecular interaction volume model (MIVM), which is a two-parameter model with the partial molar infinite dilute mixing enthalpies. The predicted values are in agreement with the experimental data and then indicate that the model is reliable and convenient.展开更多
The effects of Ni addition on the liquid phase separation and giant magnetoresi stance (GMR) of Cu Co alloys were discussed. The results reveal that Ni additio n can partially restrain the liquid phase separation of C...The effects of Ni addition on the liquid phase separation and giant magnetoresi stance (GMR) of Cu Co alloys were discussed. The results reveal that Ni additio n can partially restrain the liquid phase separation of Cu Co alloys, resultin g in a decrease of volume fraction for the Co rich particles separated from the liquid phase and in refined microstructures. The composition analyses indicate t hat Ni is dissolved in both the Co rich and the Cu rich phases, but Ni content in the Co rich phase is much higher than that in the Cu matrix. At the same ti me, Ni addition enhance the solubility between Cu and Co, especially Cu in Co s olid solution. Ni alloying into Cu Co alloys can fully prevent the liquid phase separation during melt spinning, which is very beneficial to improve GMR of Cu Co alloys.展开更多
The lack of experimental data and / or limited experimental information concerning both surface and transport properties of liquid alloys often require the prediction of these quantities. An attempt has been made to l...The lack of experimental data and / or limited experimental information concerning both surface and transport properties of liquid alloys often require the prediction of these quantities. An attempt has been made to link the thermophysical properties of a ternary Cu-Sn-Ti system and its binary Cu-Sn, Cu-Ti and SnoTi subsystems with the bulk through the study of the concentration dependence of various thermodynamic, structural, surface and dynamic properties in the frame of the statistical mechanical theory in conjunction with the quasi-lattice theory (QLT). This formalism provides valuable qualitative insight into mixing processes that occur in molten alloys.展开更多
The partial and the integral enthalpies of mixing of liquid Al-Cr and Ni-Cr binary alloys have been determined by high temperature isoperibolic calorimetry at 1723±5 K and 1729±5 K, respectively. The results...The partial and the integral enthalpies of mixing of liquid Al-Cr and Ni-Cr binary alloys have been determined by high temperature isoperibolic calorimetry at 1723±5 K and 1729±5 K, respectively. The results were analytically described by the thermodynamically adapted power series (TAPS). The enthalpies of mixing values for both binary liquid melts are small and negative and in good agreement with the available literature data. Minima of the mixing enthalpies of liquid Al-Cr and Ni-Cr alloys are -7.0 kJ·mol-1 at 46 at. pct Cr and -3.0 kJ·mol-1 at 37 at. pct Cr, respectively.展开更多
The electrical resistivity and viscosity of liquid hypoeutectic Al 7%Si and hypereutectic Al 18%Si alloys, and the influences of trace strontium and phosphorus on them were investigated. The trace additions of the t...The electrical resistivity and viscosity of liquid hypoeutectic Al 7%Si and hypereutectic Al 18%Si alloys, and the influences of trace strontium and phosphorus on them were investigated. The trace additions of the two elements increase the electrical resistivity. At the precipitation temperatures of primary phase, the electrical resistivity exhibits a discontinuity for all experimental Al Si alloys. In the discontinuity the electrical resistivity, respectively, decreases and increases abruptly for Al 7%Si alloys and Al 18%Si alloys. Phosphorus and strontium both have some effects on the discontinuity temperature and the jump value of electrical resistivity of Al 18%Si alloys, but strontium hardly has effect on them in Al 7%Si alloys. The trace additions of strontium and phosphorus increase the viscosity of the experimental alloy.展开更多
The coordination numbers in the Molecular Interaction Volume Model can be calcu-lated from the common physical quantities of pure matters.A significant advantage ofthe model lies in its ability to predict the thermody...The coordination numbers in the Molecular Interaction Volume Model can be calcu-lated from the common physical quantities of pure matters.A significant advantage ofthe model lies in its ability to predict the thermodynamic properties of ternary liqmdalloys using only the binary infinite dilute activity coefficients,and the predicted values are in good agreement with the experimental data of ternary liquid alloys,whichshows that the model is reliable,convenient and economic.展开更多
The liquid state undercoolability and crystal growth kinetics of ternary Ni-5%Cu-5%Sn and Ni-10%Cu-10%Sn alloys are investigated by the glass fluxing method. In these two alloys, experimental maximum undercoolings of ...The liquid state undercoolability and crystal growth kinetics of ternary Ni-5%Cu-5%Sn and Ni-10%Cu-10%Sn alloys are investigated by the glass fluxing method. In these two alloys, experimental maximum undercoolings of 304 K (0.18TL ) and 286K (0.17TL ) are achieved and the dendritic growth velocities attain 39.8 and 25.1 m/s, respectively. The transition of morphology from coarse dendrite into equiaxed structure occurs and the grain size of the a (Ni) phase decreases remarkably when the undercooling increases. Both the lattice constant and microhardness increase obviously with the enhancement of undercooling. The enrichment of Cu and Sn solute contents reduces the dendritic growth velocity, while enhances the lattice constant and microhardness of a (Ni) phase.展开更多
A simple analytic embedded-atom model of monoatoms that includes more than nearest neighbours has been extended to study properties of binary liquid Cu-Ni alloys, here the two-body potential between different species ...A simple analytic embedded-atom model of monoatoms that includes more than nearest neighbours has been extended to study properties of binary liquid Cu-Ni alloys, here the two-body potential between different species of atoms is taken as a function of the two-body potential for the pure metals with a unique form which yields alloy models with the same invariance to electron density transformations as monoatomic models. Faber-Ziman structure factors have been computed by molecular dynamics simulation on the base of this model. The results are in good agreement with experimental data given by Waseda, thus supporting the overall validity of the approach, especially for cross potential of Cu-Ni pair. Further, a detailed description of structure of binary liquid Cu-Ni alloys with different compositions have been performed using pair analysis and bond orientational order method etc., and then the chemical short range order has also been examined to reveal the structural characterization.展开更多
The effect of the liquid-liquid structure transition(L-LST) on the solidification behaviors and morphologies of Sn-Bi alloys was studied further. The results show that the undercooling of the primary and eutectic phas...The effect of the liquid-liquid structure transition(L-LST) on the solidification behaviors and morphologies of Sn-Bi alloys was studied further. The results show that the undercooling of the primary and eutectic phase increases and the microstructure becomes finer after solidifying from the melt experiencing the L-LST. In the meantime, in hypoeutectic alloy, when solidifying from the melt experiencing the L-LST, the morphology of primary phase changes from the fir-tree crystal into the equiaxed crystal, and less primary phase and more eutectic structure are observed. Moreover, in eutectic alloy, the spacing of eutectic phase decreases markedly. These investigations would be beneficial to further exploration of the correlation between the melt structure and the micro mechanism of solidification.展开更多
The ribbons of Cu-Cr alloys with high Cr content (15%- 35%, mass fraction) were prepared by rapid solidification. The microstructures of solidified samples were analyzed by scanning electron microscopy and transmissio...The ribbons of Cu-Cr alloys with high Cr content (15%- 35%, mass fraction) were prepared by rapid solidification. The microstructures of solidified samples were analyzed by scanning electron microscopy and transmission electron microscopy. The results reveal that a representative liquid phase separation microstructures are observed in Cu75Cr25 ribbons solidified at a cooling rate of about 104K/s. The liquid phase separation is not restrained when the cooling rate is enhanced to about 107K/s. However, the size of Cr particles solidified from Cr-rich liquid or Cr-rich regions in alloy melts could be refined by increasing the cooling rates. The size of Cr particles increases with increasing Cr contents when the ribbons contain 15% to 35%Cr.展开更多
Liquid-liquid phase separation in the undercooled Ni-20%Pb(mole fraction, the same below if not mentioned) hypermonotectic melts was investigated by the observation of the water-quenched structure and DTA analysis. Th...Liquid-liquid phase separation in the undercooled Ni-20%Pb(mole fraction, the same below if not mentioned) hypermonotectic melts was investigated by the observation of the water-quenched structure and DTA analysis. The results indicate that the number of spherical cells in the water-quenched microstructure increases with dropping temperature, and the cells gather and grow up obviously. The spherical cell origins from L1 phase separated from homogeneous melt, and is the product of monotectic reaction. Both results of the water-quenched structures and DTA analysis prove that liquid phase separation still occurs in the highly undercooled Ni-Pb hypermonotectic alloy melts, and liquid phase separation in the immiscible gap can not be fully inhibited by high undercooling and rapid solidification.展开更多
The surface tensions of pure liquid metals were estimated by using the artificial neural network method. Based on Butler's equation the surface tensions of some liquid Sn-, Ag-, Cu-based binary alloys were calcula...The surface tensions of pure liquid metals were estimated by using the artificial neural network method. Based on Butler's equation the surface tensions of some liquid Sn-, Ag-, Cu-based binary alloys were calculated from surface tensions of pure components and thermodynamic parameters of liquid alloys using a well designed computer program with C++ language, named STCBE. The agreement between calculated values and experimental data was excellent. The surface tensions of binary liquid Cu-RE(RE: Ce, Pr, Nd) alloys at 1400 K were predicted therewith.展开更多
In a previous paper it was shown that the normal spectral emissivity at 684.5 nm of a binary alloy can be lower than that of the pure constituent components. For the actual probes it was found that the observed values...In a previous paper it was shown that the normal spectral emissivity at 684.5 nm of a binary alloy can be lower than that of the pure constituent components. For the actual probes it was found that the observed values of normal spectral emissivity of the alloys are in between or higher than those of the pure constituent components. Experiments were conducted on the alloy systems Ni-Ti and Au-Ni. Their emissivity as well as electrical resistivity and enthalpy as a function of temperature is presented.展开更多
A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainab...A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainable corrosion inhibitors are chosen to investigate the corrosion inhibition behavior of ionic liquid(ILs)during the LePEO process for LA91 magnesium-lithium(Mg-Li)alloy.Results show that the ionic liquid BmimBF_(4)participates in the LePEO coating formation process,causing an increment in coating thickness and surface roughness.The low conductivity of the ionic liquid is responsible for the voltage and breakdown voltage increases during the LePEO with IL process(LePEO-IL).After adding BmimBF_(4),corrosion current density decreases from 1.159×10^(−4)A·cm^(−2)to 8.143×10^(−6)A·cm^(−2).The impedance modulus increases to 1.048×10^(4)Ω·cm^(−2)and neutral salt spray remains intact for 24 h.The superior corrosion resistance of the LePEO coating assisted by ionic liquid could be mainly attributed to its compact and thick barrier layer and physical absorption of ionic liquid.The ionic liquid-assisted LePEO technique provides a promising approach to reducing energy consumption and improving film performance.展开更多
文摘A research on kinetics of Al evaporation from liquid U—Al alloys was made in a vacuum induction melting(VIM) furnace at 1673—1843 K.The evaporation rate of Al was found to be first order with respect to Al content in the melt.The overall mass transfer coefficient of Al was determined and it was found that the evaporation rate of Al increased with increasing temperatures.The apparent activation energy of Al evaporation at 1673-1843 K was 171.5 kJ mol-1.The value of mass transfer coefficient of Al in the liquid phase was estimated to be 3.77 × 10-6,7.41×10-6,and 9.40 × 10-6m s-1at 1673,1753,and 1843 K,respectively.Meanwhile,rate determining steps were discussed and it was concluded that the evaporation rate of Al is mainly controlled by liquid phase mass transfer.
文摘Cu 71Al 25Ni 4 (mole fraction,%) shape memory alloy ribbons exhibit a good shape memory effect, which were prepared by melt-spinning technique. The microstructure of the as-spun ribbons was identified by D/Max-rA X-ray diffractometer. The order degree of martensite increases with decreasing liquid quenching temperature at the same quenching rate. The liquid structure of Cu 75Al 25 and Cu 71Al 25Ni 4 was investigated using X-ray diffraction method. The distinct pre-peaks have been found in front of main peaks of the structure factors. The pre-peak increases intensity with decreasing temperature or adding Ni. Gaussian peaks decomposing radial distribution function (RDF) indicated that Cu-Al distance is anomalously short. These results suggest that a strong interaction between Cu and Al is favorable to form β-phase-like clusters, which leads to chemical medium-range ordering in melt. This promotes formation of order martensite and suppresses γ 2-phase precipitation.
文摘It is difficult to directly electroplate Al on Mg alloys. The effects of pretreatment parameters on the corrosion resistance of films obtained on AZ31 Mg alloy surface were studied by using potentiodynamic polarization curves, to produce a compact interfacial layer as zinc-immersion deposition. After the substrate was pretreated under optimized conditions, aluminum was electrodeposited on AZ31 from TMPAC-AlCl3 room temperature ionic liquids. The depositions were characterized by scanning electron microscope equipped with energy dispersion X-ray. The results show that the traditional pretreatment of Mg alloys was successfully used for the Al-electroplating process from TMPAC-AlCl3 ionic liquids. The entire procedure includes alkaline cleaning, chemical pickling, surface activation (400 mL/L HF acid, 10 min), zinc-immersion (20 min) and anhydrous treatment. A relatively compact zinc-immersion film was prepared on the substrate surface. A silvery-colored satin aluminum deposition was obtained on AZ31 from TMPAC-AlCl3 using direct current plating.
基金financial support from ISRO under RESPOND scheme(No.ISRO/RES/3/580/2007-08)
文摘The electrodeposition of A1 and A1-Cu binary alloys on to gold substrates from a room temperature ionic liquid electrolyte containing A1C13-EtaNHC1 was studied. The electrochemical behavior of the electrolyte and the mechanism of deposition were investigated through cyclic voltammetry (CV), and the properties of deposits obtained were assessed by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) and X-ray diffraction (XRD). A1 of 70μm in thickness and an A1-Cu alloy of 30μm in thickness with 8at% copper were deposited from the electrolyte. SEM images of the deposits indicate that the A1 deposit was smooth and uniform, whereas the Al-Cu deposit was nodular. The average crystalline size, as determined by XRD patterns, was found to be (30±5) and (29±5) nm, respectively, for A1 and A1-Cu alloys. Potentiodynamic polarization (Tafel plots) and electrochemical impedance spectroscopic (EIS) measurements showed that Al-Cu alloys are more corrosion resistant than Al.
文摘The surface liquid segregation(SLS) phenomenon in semi-solid metal-high pressure die casting(SSM-HPDC) plates of 7075,2024,6082 and A201 was investigated by different techniques.Depth profiles were determined by firstly measuring the chemical composition of the surface of the plates using a Thermo Quantris optical emission spectrometer(OES).Material was then removed by a grinding process followed by measurement of the amount of material removed and chemical analysis.Chemical profiles of the main alloying elements were plotted for the cross-section of the plates in the as-cast and T6(after solution treatment) temper conditions.Vickers hardness profiles from the surface to the centre of the plates were determined.Metallographic samples of cross-sections of the castings were prepared and evaluated using a scanning electron microscope.The results show that surface liquid segregation in SSM-HPDC alloys causes significant differences in properties between the surface and the bulk of these castings in both the F and T6 temper conditions.
基金Funded by the International Cooperation Project of the Ministry of Science and Technology of China(No.2014DFR50320)the National Natural Science Foundation of China(No.51174064).
文摘During the process of liquid forging, a host of hot cracking defects were found in the Al-CuMg-Zn aluminum alloy. Therefore, mechanical tests and analyses by optical microscope, scanning electron microscope, and X-ray diffraction were performed to research the influences of zinc, magnesium, and copper(three main alloying elements) on hot cracking tendency and mechanical properties. It was concluded that all the three alloying elements exerted different effects on the performances of newly designed alloys. And the impact of microstructures on properties of alloys was stronger than that of solution strengthening. Among new alloys, Al-5 Cu-4.5 Mg-2.5 Zn alloy shows better properties as follows: σb=327 MPa, δ=2.7%, HB=107 N/mm^2, and HCS=40.
基金the National Natural Science Foundation ofChina (No.50764006)Young Foundation of Kunming University of Science and Tech-nology (No.KKZ200727021)the Applied Fundamental Research Foundation ofYunnan Province (Nos.2007E039M and 2006E0021M).
文摘The mixing enthalpies of 23 binary liquid alloys are calculated by molecular interaction volume model (MIVM), which is a two-parameter model with the partial molar infinite dilute mixing enthalpies. The predicted values are in agreement with the experimental data and then indicate that the model is reliable and convenient.
文摘The effects of Ni addition on the liquid phase separation and giant magnetoresi stance (GMR) of Cu Co alloys were discussed. The results reveal that Ni additio n can partially restrain the liquid phase separation of Cu Co alloys, resultin g in a decrease of volume fraction for the Co rich particles separated from the liquid phase and in refined microstructures. The composition analyses indicate t hat Ni is dissolved in both the Co rich and the Cu rich phases, but Ni content in the Co rich phase is much higher than that in the Cu matrix. At the same ti me, Ni addition enhance the solubility between Cu and Co, especially Cu in Co s olid solution. Ni alloying into Cu Co alloys can fully prevent the liquid phase separation during melt spinning, which is very beneficial to improve GMR of Cu Co alloys.
基金This work was financially supported by THERMOLAB - ESA MAP PROJECT, Contract No. AO-99-022. A part of this work was performed in the framework of the E.C. action COST 531 project: "Lead-free solder materials".
文摘The lack of experimental data and / or limited experimental information concerning both surface and transport properties of liquid alloys often require the prediction of these quantities. An attempt has been made to link the thermophysical properties of a ternary Cu-Sn-Ti system and its binary Cu-Sn, Cu-Ti and SnoTi subsystems with the bulk through the study of the concentration dependence of various thermodynamic, structural, surface and dynamic properties in the frame of the statistical mechanical theory in conjunction with the quasi-lattice theory (QLT). This formalism provides valuable qualitative insight into mixing processes that occur in molten alloys.
文摘The partial and the integral enthalpies of mixing of liquid Al-Cr and Ni-Cr binary alloys have been determined by high temperature isoperibolic calorimetry at 1723±5 K and 1729±5 K, respectively. The results were analytically described by the thermodynamically adapted power series (TAPS). The enthalpies of mixing values for both binary liquid melts are small and negative and in good agreement with the available literature data. Minima of the mixing enthalpies of liquid Al-Cr and Ni-Cr alloys are -7.0 kJ·mol-1 at 46 at. pct Cr and -3.0 kJ·mol-1 at 37 at. pct Cr, respectively.
文摘The electrical resistivity and viscosity of liquid hypoeutectic Al 7%Si and hypereutectic Al 18%Si alloys, and the influences of trace strontium and phosphorus on them were investigated. The trace additions of the two elements increase the electrical resistivity. At the precipitation temperatures of primary phase, the electrical resistivity exhibits a discontinuity for all experimental Al Si alloys. In the discontinuity the electrical resistivity, respectively, decreases and increases abruptly for Al 7%Si alloys and Al 18%Si alloys. Phosphorus and strontium both have some effects on the discontinuity temperature and the jump value of electrical resistivity of Al 18%Si alloys, but strontium hardly has effect on them in Al 7%Si alloys. The trace additions of strontium and phosphorus increase the viscosity of the experimental alloy.
文摘The coordination numbers in the Molecular Interaction Volume Model can be calcu-lated from the common physical quantities of pure matters.A significant advantage ofthe model lies in its ability to predict the thermodynamic properties of ternary liqmdalloys using only the binary infinite dilute activity coefficients,and the predicted values are in good agreement with the experimental data of ternary liquid alloys,whichshows that the model is reliable,convenient and economic.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51327901 and 51301138the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20126102120064+1 种基金the Aviation Science Foundation of China under Grant No 2014ZF53069the Fundamental Research Funds for the Central Universities under Grant No3102014KYJD044
文摘The liquid state undercoolability and crystal growth kinetics of ternary Ni-5%Cu-5%Sn and Ni-10%Cu-10%Sn alloys are investigated by the glass fluxing method. In these two alloys, experimental maximum undercoolings of 304 K (0.18TL ) and 286K (0.17TL ) are achieved and the dendritic growth velocities attain 39.8 and 25.1 m/s, respectively. The transition of morphology from coarse dendrite into equiaxed structure occurs and the grain size of the a (Ni) phase decreases remarkably when the undercooling increases. Both the lattice constant and microhardness increase obviously with the enhancement of undercooling. The enrichment of Cu and Sn solute contents reduces the dendritic growth velocity, while enhances the lattice constant and microhardness of a (Ni) phase.
文摘A simple analytic embedded-atom model of monoatoms that includes more than nearest neighbours has been extended to study properties of binary liquid Cu-Ni alloys, here the two-body potential between different species of atoms is taken as a function of the two-body potential for the pure metals with a unique form which yields alloy models with the same invariance to electron density transformations as monoatomic models. Faber-Ziman structure factors have been computed by molecular dynamics simulation on the base of this model. The results are in good agreement with experimental data given by Waseda, thus supporting the overall validity of the approach, especially for cross potential of Cu-Ni pair. Further, a detailed description of structure of binary liquid Cu-Ni alloys with different compositions have been performed using pair analysis and bond orientational order method etc., and then the chemical short range order has also been examined to reveal the structural characterization.
基金Projects(50571533, 50371024) supported by the National Natural Science Foundation of ChinaProject(104106) supported by Chinese Ministry of Euducation
文摘The effect of the liquid-liquid structure transition(L-LST) on the solidification behaviors and morphologies of Sn-Bi alloys was studied further. The results show that the undercooling of the primary and eutectic phase increases and the microstructure becomes finer after solidifying from the melt experiencing the L-LST. In the meantime, in hypoeutectic alloy, when solidifying from the melt experiencing the L-LST, the morphology of primary phase changes from the fir-tree crystal into the equiaxed crystal, and less primary phase and more eutectic structure are observed. Moreover, in eutectic alloy, the spacing of eutectic phase decreases markedly. These investigations would be beneficial to further exploration of the correlation between the melt structure and the micro mechanism of solidification.
基金Project(50371066) supported by the National Natural Science Foundation of China
文摘The ribbons of Cu-Cr alloys with high Cr content (15%- 35%, mass fraction) were prepared by rapid solidification. The microstructures of solidified samples were analyzed by scanning electron microscopy and transmission electron microscopy. The results reveal that a representative liquid phase separation microstructures are observed in Cu75Cr25 ribbons solidified at a cooling rate of about 104K/s. The liquid phase separation is not restrained when the cooling rate is enhanced to about 107K/s. However, the size of Cr particles solidified from Cr-rich liquid or Cr-rich regions in alloy melts could be refined by increasing the cooling rates. The size of Cr particles increases with increasing Cr contents when the ribbons contain 15% to 35%Cr.
基金Project(50171055) supported by the National Natural Science Foundation of China Project(2004E108) supported by Shaanxi Natural Science Foundation, China+1 种基金 Project(03JK132) supported by Shaanxi Education Bureau Foundation, China Project(200208) supported by the Doctorate Creation Foundation of Northwestern Polytechnical University
文摘Liquid-liquid phase separation in the undercooled Ni-20%Pb(mole fraction, the same below if not mentioned) hypermonotectic melts was investigated by the observation of the water-quenched structure and DTA analysis. The results indicate that the number of spherical cells in the water-quenched microstructure increases with dropping temperature, and the cells gather and grow up obviously. The spherical cell origins from L1 phase separated from homogeneous melt, and is the product of monotectic reaction. Both results of the water-quenched structures and DTA analysis prove that liquid phase separation still occurs in the highly undercooled Ni-Pb hypermonotectic alloy melts, and liquid phase separation in the immiscible gap can not be fully inhibited by high undercooling and rapid solidification.
文摘The surface tensions of pure liquid metals were estimated by using the artificial neural network method. Based on Butler's equation the surface tensions of some liquid Sn-, Ag-, Cu-based binary alloys were calculated from surface tensions of pure components and thermodynamic parameters of liquid alloys using a well designed computer program with C++ language, named STCBE. The agreement between calculated values and experimental data was excellent. The surface tensions of binary liquid Cu-RE(RE: Ce, Pr, Nd) alloys at 1400 K were predicted therewith.
基金This work is financially supported by the "Austrian Science Fund - FWF", Sensengasse 1, 1090 Vienna, under contract No. P15055
文摘In a previous paper it was shown that the normal spectral emissivity at 684.5 nm of a binary alloy can be lower than that of the pure constituent components. For the actual probes it was found that the observed values of normal spectral emissivity of the alloys are in between or higher than those of the pure constituent components. Experiments were conducted on the alloy systems Ni-Ti and Au-Ni. Their emissivity as well as electrical resistivity and enthalpy as a function of temperature is presented.
基金supported by the Natural Science Founda-tion of Beijing(Grant No.2182017,2202017).
文摘A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainable corrosion inhibitors are chosen to investigate the corrosion inhibition behavior of ionic liquid(ILs)during the LePEO process for LA91 magnesium-lithium(Mg-Li)alloy.Results show that the ionic liquid BmimBF_(4)participates in the LePEO coating formation process,causing an increment in coating thickness and surface roughness.The low conductivity of the ionic liquid is responsible for the voltage and breakdown voltage increases during the LePEO with IL process(LePEO-IL).After adding BmimBF_(4),corrosion current density decreases from 1.159×10^(−4)A·cm^(−2)to 8.143×10^(−6)A·cm^(−2).The impedance modulus increases to 1.048×10^(4)Ω·cm^(−2)and neutral salt spray remains intact for 24 h.The superior corrosion resistance of the LePEO coating assisted by ionic liquid could be mainly attributed to its compact and thick barrier layer and physical absorption of ionic liquid.The ionic liquid-assisted LePEO technique provides a promising approach to reducing energy consumption and improving film performance.