Liquefied natural gas(LNG)is regarded as one of the cleanest fossil fuel and has experienced significant developments in recent years.The liquefaction process of natural gas is energy-intensive,while the regasificatio...Liquefied natural gas(LNG)is regarded as one of the cleanest fossil fuel and has experienced significant developments in recent years.The liquefaction process of natural gas is energy-intensive,while the regasification of LNG gives out a huge amount of waste energy since plenty of high grade cold energy(-160℃)from LNG is released to sea water directly in most cases,and also sometimes LNG is burned for regasification.On the other hand,liquid air energy storage(LAES)is an emerging energy storage technology for applications such as peak load shifting of power grids,which generates 30%-40%of compression heat(-200℃).Such heat could lead to energy waste if not recovered and used.The recovery of the compression heat is technically feasible but requires additional capital investment,which may not always be economically attractive.Therefore,we propose a power plant for recovering the waste cryogenic energy from LNG regasification and compression heat from the LAES.The challenge for such a power plant is the wide working temperature range between the low-temperature exergy source(-160℃)and heat source(-200℃).Nitrogen and argon are proposed as the working fluids to address the challenge.Thermodynamic analyses are carried out and the results show that the power plant could achieve a thermal efficiency of 27%and 19%and an exergy efficiency of 40%and 28%for nitrogen and argon,respectively.Here,with the nitrogen as working fluid undergoes a complete Brayton Cycle,while the argon based power plant goes through a combined Brayton and Rankine Cycle.Besides,the economic analysis shows that the payback period of this proposed system is only 2.2 years,utilizing the excess heat from a 5 MW/40 MWh LAES system.The findings suggest that the waste energy based power plant could be co-located with the LNG terminal and LAES plant,providing additional power output and reducing energy waste.展开更多
Energy storage technology is an essential part of the efficient energy system.Compressed air energy storage(CAES)is considered to be one of the most promising large-scale physical energy storage technologies.It is fav...Energy storage technology is an essential part of the efficient energy system.Compressed air energy storage(CAES)is considered to be one of the most promising large-scale physical energy storage technologies.It is favored because of its low-cost,long-life,environmentally friendly and low-carbon characteristics.The compressor is the core component of CAES,and the performance is critical to the overall system efficiency.That importance is not only reflected in the design point,but also in the continuous efficient operation under variable working conditions.The diagonal compressor is currently the focus of the developing large-scale CAES because of its stronger flow capacity compared with traditional centrifugal compressors.And the diagonal compressor has the higher single stage pressure ratio compared with axial compressors.In this paper,the full three dimensional numerical simulation technologies with synergy theory are used to compare and analyze the internal flow characteristics.The performance of the centrifugal and diagonal impellers that are optimized under the same requirements for large-scale CAES has been analyzed.The relationship between the internal flow characteristics and performance of the centrifugal and diagonal impellers with the change of mass flow rates and total inlet temperature is given qualitatively and quantitatively.Where the cosine value of the synergy angle is high,the local flow loss is large.The smaller proportion of the positive area is the pursuit of design.Through comparative analysis,it is concluded that the internal flow and performance changes of centrifugal and diagonal impellers are different.The results confirm the superiority and feasibility of the off-design performance of the diagonal compressor applied to the developing large-scale CAES.展开更多
Compressed air energy storage(CAES)is an important technology in the development of renewable energy.The main advantages of CAES are its high energy capacity and environmental friendliness.One of the main challenges i...Compressed air energy storage(CAES)is an important technology in the development of renewable energy.The main advantages of CAES are its high energy capacity and environmental friendliness.One of the main challenges is its low energy density,meaning a natural cavern is required for air storage.High-pressure air compression can effectively solve the problem.A liquid piston gas compressor facilitates high-pressure compression,and efficient convective heat transfer can significantly reduce the compression energy consumption during air compression.In this paper,a near isothermal compression method is proposed to increase the surface area and heat exchange by using multiple tube bundles in parallel in the compression chamber in order to obtain high-pressure air using liquid-driven compression.Air compression with a compression ratio of 6.25:1 is achieved by reducing the tube diameter and increasing the parallel tube number while keeping the compression chamber cross-sectional area constant in order to obtain a high-pressure air of 5 MPa.The performances of this system are analyzed when different numbers of tubes are applied.A system compression efficiency of 93.0%and an expansion efficiency of 92.9%can be achieved when 1000 tubes are applied at a 1 minute period.A new approach is provided in this study to achieve high efficiency and high pressure compressed air energy storage.展开更多
Flexible gas power plants are subject to energy storage,peak regulations,and greenhouse gas emissions.This study proposes an integrated power generation system that combines liquid air energy storage(LAES),liquefied n...Flexible gas power plants are subject to energy storage,peak regulations,and greenhouse gas emissions.This study proposes an integrated power generation system that combines liquid air energy storage(LAES),liquefied natural gas(LNG)cold energy utilization,gas power systems,and CO_(2) capture and storage(CCS)technologies,named the LAES-LNG-CCS system.The off-peak electricity can be stored in liquid air.During the peak period,air and gas turbines generate supplementary electricity.Both LNG chemical energy and cold energy were considered:the former was used for gas power plants,and the latter was used for LAES regasification and CCS processes.Based on the thermodynamic analysis,we evaluated the effects of the recovery pressure,CCS pressure,and combustion temperature on the system power consumption and efficiency.The results demonstrated that the system recovery pressure,CCS pressure,and combustion temperature had the greatest effects on system power generation.Round-trip efficiency(RTE)was significantly affected by combustion temperature.The largest exergy loss occurred in the gas power plant.The optimal system operating ranges of the system recovery pressure,CCS pressure,and combustion temperature were 6−10 MPa,0.53−0.8 MPa,and 1,503−1,773 K,where the RTEs and𝜂Ex,RS reached 55%−58.98%and 74.6%−76%,respectively.The proposed system can simultaneously achieve the synergistic functions of large-scale energy storage,multilevel energy utilization,peak regulation,and carbon emission reduction.It can also be widely used in advanced distributed energy storage applications in the future.展开更多
Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"a...Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"and"Underground Resource Utiliza-tion".Starting from the development of Compressed Air Energy Storage(CAES)technology,the site selection of CAES in depleted gas and oil reservoirs,the evolution mechanism of reservoir dynamic sealing,and the high-flow CAES and injection technology are summarized.It focuses on analyzing the characteristics,key equipment,reservoir construction,application scenarios and cost analysis of CAES projects,and sorting out the technical key points and existing difficulties.The devel-opment trend of CAES technology is proposed,and the future development path is scrutinized to provide reference for the research of CAES projects in depleted oil and gas reservoirs.展开更多
Liquid Air Energy Storage(LAES)is at pilot scale.Air cooling and liquefaction stores energy;reheating revaporises the air at pressure,powering a turbine or engine(Ameel et al.,2013).Liquefaction requires water&CO2...Liquid Air Energy Storage(LAES)is at pilot scale.Air cooling and liquefaction stores energy;reheating revaporises the air at pressure,powering a turbine or engine(Ameel et al.,2013).Liquefaction requires water&CO2 removal,preventing ice fouling.This paper proposes subsequent geological storage of this CO2–offering a novel Carbon Dioxide Removal(CDR)by-product,for the energy storage industry.It additionally assesses the scale constraint and economic opportunity offered by implementing this CDR approach.Similarly,established Compressed Air Energy Storage(CAES)uses air compression and subsequent expansion.CAES could also add CO2 scrubbing and subsequent storage,at extra cost.CAES stores fewer joules per kilogram of air than LAES–potentially scrubbing more CO2 per joule stored.Operational LAES/CAES technologies cannot offer full-scale CDR this century(Stocker et al.,2014),yet they could offer around 4%of projected CO2 disposals for LAES and<25%for current-technology CAES.LAES CDR could reach trillion-dollar scale this century(20 billion USD/year,to first order).A larger,less certain commercial CDR opportunity exists for modified conventional CAES,due to additional equipment requirements.CDR may be commercially critical for LAES/CAES usage growth,and the necessary infrastructure may influence plant scaling and placement.A suggested design for low-pressure CAES theoretically offers global-scale CDR potential within a century(ignoring siting constraints)–but this must be costed against competing CDR and energy storage technologies.展开更多
Liquid air energy storage(LAES)has been regarded as a large-scale electrical storage technology.In this paper,we first investigate the performance of the current LAES(termed as a baseline LAES)over a far wider range o...Liquid air energy storage(LAES)has been regarded as a large-scale electrical storage technology.In this paper,we first investigate the performance of the current LAES(termed as a baseline LAES)over a far wider range of charging pressure(1 to 21 MPa).Our analyses show that the baseline LAES could achieve an electrical round trip efficiency(e RTE)above 60%at a high charging pressure of 19 MPa.The baseline LAES,however,produces a large amount of excess heat particularly at low charging pressures with the maximum occurred at~1 MPa.Hence,the performance of the baseline LAES,especially at low charging pressures,is underestimated by only considering electrical energy in all the previous research.The performance of the baseline LAES with excess heat is then evaluated which gives a high e RTE even at lower charging pressures;the local maximum of 62%is achieved at~4 MPa.As a result of the above,a hybrid LAES system is proposed to provide cooling,heating,hot water and power.To evaluate the performance of the hybrid LAES system,three performance indicators are considered:nominal-electrical round trip efficiency(ne RTE),primary energy savings and avoided carbon dioxide emissions.Our results show that the hybrid LAES can achieve a high ne RTE between 52%and 76%,with the maximum at~5 MPa.For a given size of hybrid LAES(1 MW×8 h),the primary energy savings and avoided carbon dioxide emissions are up to 12.1 MWh and 2.3 ton,respectively.These new findings suggest,for the first time,that small-scale LAES systems could be best operated at lower charging pressures and the technologies have a great potential for applications in local decentralized micro energy networks.展开更多
With the rapid development of marine renewable energy technologies, the demand to mitigate the fluctuation of variable generators with energy storage technologies continues to increase. Offshore compressed air energy ...With the rapid development of marine renewable energy technologies, the demand to mitigate the fluctuation of variable generators with energy storage technologies continues to increase. Offshore compressed air energy storage (OCAES) is a novel flexible-scale energy storage technology that is suitable for marine renewable energy storage in coastal cities, islands, offshore platforms, and offshore renewable energy farms. For deep-water applications, a marine riser is necessary for connecting floating platforms and subsea systems. Thus, the response characteristics of marine risers are of great importance for the stability and safety of the entire OCAES system. In this study, numerical models of two kinds of flexible risers, namely, catenary riser and lazy wave riser, are established in OrcaFlex software. The static and dynamic characteristics of the catenary and the lazy wave risers are analyzed under different environment conditions and internal pressure levels. A sensitivity analysis of the main parameters affecting the lazy wave riser is also conducted. Results show that the structure of the lazy wave riser is more complex than the catenary riser;nevertheless, the former presents better response performance.展开更多
浮式液化天然气生产储卸装置(floating liquefied natural gas system,FLNG)特种液货船作为开发海上天然气田的新式装置,极大的方便了对处于深海的气田的开发利用,该文以“Prelude”号FLNG作为母船,提出一种新型FLNG低温能量管理系统。...浮式液化天然气生产储卸装置(floating liquefied natural gas system,FLNG)特种液货船作为开发海上天然气田的新式装置,极大的方便了对处于深海的气田的开发利用,该文以“Prelude”号FLNG作为母船,提出一种新型FLNG低温能量管理系统。该系统主要利用液态空气作为媒介储存和释放能量,通过液态空气冷能与混合制冷循环相结合实现天然气液化过程,在提高LNG生产性能的同时集成了CO_(2)液化循环和电力的生产,通过CO_(2)液化和剩余冷能发电提高系统的输出性能,实现了FLNG船舶冷能的多级利用,也为FLNG船舶冷能利用提供新方法,新途径。所提系统相较于基准模型具有更好的性能,在7.04年可实现成本回收。最后采用多目标性能优化,进一步提高系统㶲效率达60.67%,同时降低约2.3%的成本。该FLNG低温能量管理系统有高效、低耗、稳收益、低碳化等特点,可更好优化海上LNG供应链,促进航运业“双碳”发展。展开更多
先进绝热压缩空气储能(advanced adiabatic compressed air energy storage system,AA-CAES)仿真建模及分析是其工程实践的基础。然而,目前模型一般基于理想工况建立,分析结果与实际工况相偏差较大,无法指导工程应用。为此,在传统热力...先进绝热压缩空气储能(advanced adiabatic compressed air energy storage system,AA-CAES)仿真建模及分析是其工程实践的基础。然而,目前模型一般基于理想工况建立,分析结果与实际工况相偏差较大,无法指导工程应用。为此,在传统热力学模型基础上,考虑了空气流动阻力损失和能量转换设备损耗等因素,建立了面向工程应用的AA-CAES模型并以200MW盐穴AA-CAES系统为例进行了分析。同时,对系统效率分析方法进行改进并对其进行了先进㶲分析。结果表明,空气管道㶲损失占总㶲损失比例接近7%,能量转换设备损耗导致电-电效率比轴功效率低5%,二者对系统性能影响较大,在进行工程设计时不可以忽略。系统各部件可避免㶲损失占比均较大,表明系统具有较大的性能提升潜力。各部件㶲损失为其内部㶲损失,与其他部件是否工作在最佳状态关系不大。展开更多
基金partial support of UK EPSRC under grants EP/V012053/1,EP/S032622/1,EP/P004709/1,EP/P003605/1 and EP/N032888/1the British Council under 2020-RLWK12-10478 and 2019-RLWK11-10724。
文摘Liquefied natural gas(LNG)is regarded as one of the cleanest fossil fuel and has experienced significant developments in recent years.The liquefaction process of natural gas is energy-intensive,while the regasification of LNG gives out a huge amount of waste energy since plenty of high grade cold energy(-160℃)from LNG is released to sea water directly in most cases,and also sometimes LNG is burned for regasification.On the other hand,liquid air energy storage(LAES)is an emerging energy storage technology for applications such as peak load shifting of power grids,which generates 30%-40%of compression heat(-200℃).Such heat could lead to energy waste if not recovered and used.The recovery of the compression heat is technically feasible but requires additional capital investment,which may not always be economically attractive.Therefore,we propose a power plant for recovering the waste cryogenic energy from LNG regasification and compression heat from the LAES.The challenge for such a power plant is the wide working temperature range between the low-temperature exergy source(-160℃)and heat source(-200℃).Nitrogen and argon are proposed as the working fluids to address the challenge.Thermodynamic analyses are carried out and the results show that the power plant could achieve a thermal efficiency of 27%and 19%and an exergy efficiency of 40%and 28%for nitrogen and argon,respectively.Here,with the nitrogen as working fluid undergoes a complete Brayton Cycle,while the argon based power plant goes through a combined Brayton and Rankine Cycle.Besides,the economic analysis shows that the payback period of this proposed system is only 2.2 years,utilizing the excess heat from a 5 MW/40 MWh LAES system.The findings suggest that the waste energy based power plant could be co-located with the LNG terminal and LAES plant,providing additional power output and reducing energy waste.
基金supported by the Major Science and Technology Projects of Inner Mongolia(Grant No.2021ZD0030)the National Natural Science Foundation of China(Grant No.52106278)+1 种基金the National Science Fund for Distinguished Young Scholars(Grant No.51925604)the Science and Technology Foundation of Guizhou Province(No.[2019]1422)。
文摘Energy storage technology is an essential part of the efficient energy system.Compressed air energy storage(CAES)is considered to be one of the most promising large-scale physical energy storage technologies.It is favored because of its low-cost,long-life,environmentally friendly and low-carbon characteristics.The compressor is the core component of CAES,and the performance is critical to the overall system efficiency.That importance is not only reflected in the design point,but also in the continuous efficient operation under variable working conditions.The diagonal compressor is currently the focus of the developing large-scale CAES because of its stronger flow capacity compared with traditional centrifugal compressors.And the diagonal compressor has the higher single stage pressure ratio compared with axial compressors.In this paper,the full three dimensional numerical simulation technologies with synergy theory are used to compare and analyze the internal flow characteristics.The performance of the centrifugal and diagonal impellers that are optimized under the same requirements for large-scale CAES has been analyzed.The relationship between the internal flow characteristics and performance of the centrifugal and diagonal impellers with the change of mass flow rates and total inlet temperature is given qualitatively and quantitatively.Where the cosine value of the synergy angle is high,the local flow loss is large.The smaller proportion of the positive area is the pursuit of design.Through comparative analysis,it is concluded that the internal flow and performance changes of centrifugal and diagonal impellers are different.The results confirm the superiority and feasibility of the off-design performance of the diagonal compressor applied to the developing large-scale CAES.
文摘Compressed air energy storage(CAES)is an important technology in the development of renewable energy.The main advantages of CAES are its high energy capacity and environmental friendliness.One of the main challenges is its low energy density,meaning a natural cavern is required for air storage.High-pressure air compression can effectively solve the problem.A liquid piston gas compressor facilitates high-pressure compression,and efficient convective heat transfer can significantly reduce the compression energy consumption during air compression.In this paper,a near isothermal compression method is proposed to increase the surface area and heat exchange by using multiple tube bundles in parallel in the compression chamber in order to obtain high-pressure air using liquid-driven compression.Air compression with a compression ratio of 6.25:1 is achieved by reducing the tube diameter and increasing the parallel tube number while keeping the compression chamber cross-sectional area constant in order to obtain a high-pressure air of 5 MPa.The performances of this system are analyzed when different numbers of tubes are applied.A system compression efficiency of 93.0%and an expansion efficiency of 92.9%can be achieved when 1000 tubes are applied at a 1 minute period.A new approach is provided in this study to achieve high efficiency and high pressure compressed air energy storage.
基金funded by the National Natural Science Foundation of China(Grant No.:52076159).
文摘Flexible gas power plants are subject to energy storage,peak regulations,and greenhouse gas emissions.This study proposes an integrated power generation system that combines liquid air energy storage(LAES),liquefied natural gas(LNG)cold energy utilization,gas power systems,and CO_(2) capture and storage(CCS)technologies,named the LAES-LNG-CCS system.The off-peak electricity can be stored in liquid air.During the peak period,air and gas turbines generate supplementary electricity.Both LNG chemical energy and cold energy were considered:the former was used for gas power plants,and the latter was used for LAES regasification and CCS processes.Based on the thermodynamic analysis,we evaluated the effects of the recovery pressure,CCS pressure,and combustion temperature on the system power consumption and efficiency.The results demonstrated that the system recovery pressure,CCS pressure,and combustion temperature had the greatest effects on system power generation.Round-trip efficiency(RTE)was significantly affected by combustion temperature.The largest exergy loss occurred in the gas power plant.The optimal system operating ranges of the system recovery pressure,CCS pressure,and combustion temperature were 6−10 MPa,0.53−0.8 MPa,and 1,503−1,773 K,where the RTEs and𝜂Ex,RS reached 55%−58.98%and 74.6%−76%,respectively.The proposed system can simultaneously achieve the synergistic functions of large-scale energy storage,multilevel energy utilization,peak regulation,and carbon emission reduction.It can also be widely used in advanced distributed energy storage applications in the future.
基金the financial support from the Scientific Research and Technology Development Project of China Energy Engineering Corporation Limited(CEEC-KJZX-04).
文摘Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"and"Underground Resource Utiliza-tion".Starting from the development of Compressed Air Energy Storage(CAES)technology,the site selection of CAES in depleted gas and oil reservoirs,the evolution mechanism of reservoir dynamic sealing,and the high-flow CAES and injection technology are summarized.It focuses on analyzing the characteristics,key equipment,reservoir construction,application scenarios and cost analysis of CAES projects,and sorting out the technical key points and existing difficulties.The devel-opment trend of CAES technology is proposed,and the future development path is scrutinized to provide reference for the research of CAES projects in depleted oil and gas reservoirs.
文摘Liquid Air Energy Storage(LAES)is at pilot scale.Air cooling and liquefaction stores energy;reheating revaporises the air at pressure,powering a turbine or engine(Ameel et al.,2013).Liquefaction requires water&CO2 removal,preventing ice fouling.This paper proposes subsequent geological storage of this CO2–offering a novel Carbon Dioxide Removal(CDR)by-product,for the energy storage industry.It additionally assesses the scale constraint and economic opportunity offered by implementing this CDR approach.Similarly,established Compressed Air Energy Storage(CAES)uses air compression and subsequent expansion.CAES could also add CO2 scrubbing and subsequent storage,at extra cost.CAES stores fewer joules per kilogram of air than LAES–potentially scrubbing more CO2 per joule stored.Operational LAES/CAES technologies cannot offer full-scale CDR this century(Stocker et al.,2014),yet they could offer around 4%of projected CO2 disposals for LAES and<25%for current-technology CAES.LAES CDR could reach trillion-dollar scale this century(20 billion USD/year,to first order).A larger,less certain commercial CDR opportunity exists for modified conventional CAES,due to additional equipment requirements.CDR may be commercially critical for LAES/CAES usage growth,and the necessary infrastructure may influence plant scaling and placement.A suggested design for low-pressure CAES theoretically offers global-scale CDR potential within a century(ignoring siting constraints)–but this must be costed against competing CDR and energy storage technologies.
基金the partial support from UK EPSRC Manifest Project under EP/N032888/1,EP/P003605/1a UK FCO Science&Innovation Network grant(Global Partnerships Fund)an IGI/IAS Global Challenges Funding(IGI/IAS ID 3041)。
文摘Liquid air energy storage(LAES)has been regarded as a large-scale electrical storage technology.In this paper,we first investigate the performance of the current LAES(termed as a baseline LAES)over a far wider range of charging pressure(1 to 21 MPa).Our analyses show that the baseline LAES could achieve an electrical round trip efficiency(e RTE)above 60%at a high charging pressure of 19 MPa.The baseline LAES,however,produces a large amount of excess heat particularly at low charging pressures with the maximum occurred at~1 MPa.Hence,the performance of the baseline LAES,especially at low charging pressures,is underestimated by only considering electrical energy in all the previous research.The performance of the baseline LAES with excess heat is then evaluated which gives a high e RTE even at lower charging pressures;the local maximum of 62%is achieved at~4 MPa.As a result of the above,a hybrid LAES system is proposed to provide cooling,heating,hot water and power.To evaluate the performance of the hybrid LAES system,three performance indicators are considered:nominal-electrical round trip efficiency(ne RTE),primary energy savings and avoided carbon dioxide emissions.Our results show that the hybrid LAES can achieve a high ne RTE between 52%and 76%,with the maximum at~5 MPa.For a given size of hybrid LAES(1 MW×8 h),the primary energy savings and avoided carbon dioxide emissions are up to 12.1 MWh and 2.3 ton,respectively.These new findings suggest,for the first time,that small-scale LAES systems could be best operated at lower charging pressures and the technologies have a great potential for applications in local decentralized micro energy networks.
基金supported by the Fundamental Research Funds for the Central Universities of China(grant numbers 3132016353,3132019117,3132019122)the Natural Sciences and Engineering Research Council of Canada
文摘With the rapid development of marine renewable energy technologies, the demand to mitigate the fluctuation of variable generators with energy storage technologies continues to increase. Offshore compressed air energy storage (OCAES) is a novel flexible-scale energy storage technology that is suitable for marine renewable energy storage in coastal cities, islands, offshore platforms, and offshore renewable energy farms. For deep-water applications, a marine riser is necessary for connecting floating platforms and subsea systems. Thus, the response characteristics of marine risers are of great importance for the stability and safety of the entire OCAES system. In this study, numerical models of two kinds of flexible risers, namely, catenary riser and lazy wave riser, are established in OrcaFlex software. The static and dynamic characteristics of the catenary and the lazy wave risers are analyzed under different environment conditions and internal pressure levels. A sensitivity analysis of the main parameters affecting the lazy wave riser is also conducted. Results show that the structure of the lazy wave riser is more complex than the catenary riser;nevertheless, the former presents better response performance.
文摘浮式液化天然气生产储卸装置(floating liquefied natural gas system,FLNG)特种液货船作为开发海上天然气田的新式装置,极大的方便了对处于深海的气田的开发利用,该文以“Prelude”号FLNG作为母船,提出一种新型FLNG低温能量管理系统。该系统主要利用液态空气作为媒介储存和释放能量,通过液态空气冷能与混合制冷循环相结合实现天然气液化过程,在提高LNG生产性能的同时集成了CO_(2)液化循环和电力的生产,通过CO_(2)液化和剩余冷能发电提高系统的输出性能,实现了FLNG船舶冷能的多级利用,也为FLNG船舶冷能利用提供新方法,新途径。所提系统相较于基准模型具有更好的性能,在7.04年可实现成本回收。最后采用多目标性能优化,进一步提高系统㶲效率达60.67%,同时降低约2.3%的成本。该FLNG低温能量管理系统有高效、低耗、稳收益、低碳化等特点,可更好优化海上LNG供应链,促进航运业“双碳”发展。
文摘先进绝热压缩空气储能(advanced adiabatic compressed air energy storage system,AA-CAES)仿真建模及分析是其工程实践的基础。然而,目前模型一般基于理想工况建立,分析结果与实际工况相偏差较大,无法指导工程应用。为此,在传统热力学模型基础上,考虑了空气流动阻力损失和能量转换设备损耗等因素,建立了面向工程应用的AA-CAES模型并以200MW盐穴AA-CAES系统为例进行了分析。同时,对系统效率分析方法进行改进并对其进行了先进㶲分析。结果表明,空气管道㶲损失占总㶲损失比例接近7%,能量转换设备损耗导致电-电效率比轴功效率低5%,二者对系统性能影响较大,在进行工程设计时不可以忽略。系统各部件可避免㶲损失占比均较大,表明系统具有较大的性能提升潜力。各部件㶲损失为其内部㶲损失,与其他部件是否工作在最佳状态关系不大。