Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous...Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous explosive reactions when subjected to external stimuli such as electrical discharge.Therefore,developing a reliable model for predicting their electrostatic discharge sensitivity(ESD)becomes imperative.This study proposes a novel and straightforward model based on the presence of specific groups(-NH_(2) or-NH-,-N=N^(+)-O^(-)and-NNO_(2),-ONO_(2) or-NO_(2))under certain conditions to assess the ESD of NRHECs and their salts,employing interpretable structural parameters.Utilizing a comprehensive dataset comprising 54 ESD measurements of NRHECs and their salts,divided into 49/5 training/test sets,the model achieves promising results.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Maximum Error for the training set are reported as 0.16 J,0.12 J,and 0.5 J,respectively.Notably,the ratios RMSE(training)/RMSE(test),MAE(training)/MAE(test),and Max Error(training)/Max Error(test)are all greater than 1.0,indicating the robust predictive capabilities of the model.The presented model demonstrates its efficacy in providing a reliable assessment of ESD for the targeted NRHECs and their salts,without the need for intricate computer codes or expert involvement.展开更多
Graphite electrodes were used for the direct current (DC) arc discharge in water. And high-resolution transmission electron microscopy (HRTEM) was used to investigate the products. Based on the experimental phenom...Graphite electrodes were used for the direct current (DC) arc discharge in water. And high-resolution transmission electron microscopy (HRTEM) was used to investigate the products. Based on the experimental phenomena and nano-structure products, arc plasma characteristics in water were analyzed theoretically. Two growth regions and relevant growth modes were proposed to interpret the formation mechanisms of nano-structures by arc discharge in water. Furthermore, liquid nitrogen and cross magnetic field was applied to change the arcing state respectively, and new carbon nano-structures were obtained. Their formation mechanisms were also analyzed correspondingly.展开更多
为了比较粉状炸药和块状炸药抗静电能力的差异,采用粉状试样和块状试样静电放电(ESD)试验方法分别对PETN、TNT和PBX-1(HMX含量95%)炸药进行了ESD试验。结果显示:3种炸药粉状试样的50%发火电压分别为2.52 k V、4.95 k V和7.21 k V;压制...为了比较粉状炸药和块状炸药抗静电能力的差异,采用粉状试样和块状试样静电放电(ESD)试验方法分别对PETN、TNT和PBX-1(HMX含量95%)炸药进行了ESD试验。结果显示:3种炸药粉状试样的50%发火电压分别为2.52 k V、4.95 k V和7.21 k V;压制、加工成型后,3种炸药的块状试样在15.0 k V电压刺激下没有发火。经分析可知,块状炸药抗静电能力大幅提高的主要原因为ESD过程中存在电、热作用不同步现象,削弱了电场对试样的作用,宏观上更多表现出来电火花的热作用。展开更多
文中以水作为工作溶液,空气作为工作气体,采用电压—电流波形测量、发光图像拍摄、发射光谱分析等手段诊断了网—板电极、管—板电极和刃—板电极结构气液两相介质阻挡放电(DBD)的放电特性,研究了外加电压幅值对这3种电极结构放电产生影...文中以水作为工作溶液,空气作为工作气体,采用电压—电流波形测量、发光图像拍摄、发射光谱分析等手段诊断了网—板电极、管—板电极和刃—板电极结构气液两相介质阻挡放电(DBD)的放电特性,研究了外加电压幅值对这3种电极结构放电产生影响,进一步计算得到了放电功率、传输电荷、分子振动温度和分子转动温度等主要放电参量,研究了他们随外加电压变化的变化规律,并结合放电理论对不同电极结构下气液两相DBD的放电机制进行分析。结果表明,相同条件下网—板电极结构气液两相DBD放电最强,放电功率与传输电荷最大,放电电流可达140 m A。电极布置差异导致电场不均匀系数的不同是放电特性出现差异的主要原因。随着电压幅值的增加,3种电极结构放电增强,放电功率和分子振动温度增加,电子密度也增加。展开更多
文摘Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous explosive reactions when subjected to external stimuli such as electrical discharge.Therefore,developing a reliable model for predicting their electrostatic discharge sensitivity(ESD)becomes imperative.This study proposes a novel and straightforward model based on the presence of specific groups(-NH_(2) or-NH-,-N=N^(+)-O^(-)and-NNO_(2),-ONO_(2) or-NO_(2))under certain conditions to assess the ESD of NRHECs and their salts,employing interpretable structural parameters.Utilizing a comprehensive dataset comprising 54 ESD measurements of NRHECs and their salts,divided into 49/5 training/test sets,the model achieves promising results.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Maximum Error for the training set are reported as 0.16 J,0.12 J,and 0.5 J,respectively.Notably,the ratios RMSE(training)/RMSE(test),MAE(training)/MAE(test),and Max Error(training)/Max Error(test)are all greater than 1.0,indicating the robust predictive capabilities of the model.The presented model demonstrates its efficacy in providing a reliable assessment of ESD for the targeted NRHECs and their salts,without the need for intricate computer codes or expert involvement.
基金National Natural Science Foundation of China (No.50377030)
文摘Graphite electrodes were used for the direct current (DC) arc discharge in water. And high-resolution transmission electron microscopy (HRTEM) was used to investigate the products. Based on the experimental phenomena and nano-structure products, arc plasma characteristics in water were analyzed theoretically. Two growth regions and relevant growth modes were proposed to interpret the formation mechanisms of nano-structures by arc discharge in water. Furthermore, liquid nitrogen and cross magnetic field was applied to change the arcing state respectively, and new carbon nano-structures were obtained. Their formation mechanisms were also analyzed correspondingly.
文摘为了比较粉状炸药和块状炸药抗静电能力的差异,采用粉状试样和块状试样静电放电(ESD)试验方法分别对PETN、TNT和PBX-1(HMX含量95%)炸药进行了ESD试验。结果显示:3种炸药粉状试样的50%发火电压分别为2.52 k V、4.95 k V和7.21 k V;压制、加工成型后,3种炸药的块状试样在15.0 k V电压刺激下没有发火。经分析可知,块状炸药抗静电能力大幅提高的主要原因为ESD过程中存在电、热作用不同步现象,削弱了电场对试样的作用,宏观上更多表现出来电火花的热作用。
文摘文中以水作为工作溶液,空气作为工作气体,采用电压—电流波形测量、发光图像拍摄、发射光谱分析等手段诊断了网—板电极、管—板电极和刃—板电极结构气液两相介质阻挡放电(DBD)的放电特性,研究了外加电压幅值对这3种电极结构放电产生影响,进一步计算得到了放电功率、传输电荷、分子振动温度和分子转动温度等主要放电参量,研究了他们随外加电压变化的变化规律,并结合放电理论对不同电极结构下气液两相DBD的放电机制进行分析。结果表明,相同条件下网—板电极结构气液两相DBD放电最强,放电功率与传输电荷最大,放电电流可达140 m A。电极布置差异导致电场不均匀系数的不同是放电特性出现差异的主要原因。随着电压幅值的增加,3种电极结构放电增强,放电功率和分子振动温度增加,电子密度也增加。