On account of limited knowledge of the breakup of power law liquid film, the process of its disintegration and atomization was studied by using a planar liquid film. A linear stability analysis was adopted to predict ...On account of limited knowledge of the breakup of power law liquid film, the process of its disintegration and atomization was studied by using a planar liquid film. A linear stability analysis was adopted to predict the breakup characteristics of the power law film. The predicting formulas of stripping breakup length and diameter of ligament were put forward presently. Through high-speed photography and laser light sheet illumination,different breakup characteristics of flat power law film under different conditions were derived. The characteristic dimension of breakup regimes were defined and extracted. The effects of several parameters(injection pressure,ambient pressure, nozzle structure and fluid property) on the stripping breakup length and spray angle were investigated. The results revealed that increasing both the velocity of liquid film and the ambient pressure facilitated the breakup of film, reduced the stripping breakup length and enlarged the spray angle in different extents. The comparison between theoretical and experimental results was conducted to validate the feasibility of the linear stability theory.展开更多
为了研究液体横向射流在气膜作用下的破碎过程,采用背景光成像技术及VOF TO DPM方法进行了实验研究和仿真研究,模拟介质为水和空气.研究结果表明,液体射流在气膜作用下主要存在两种破碎过程:柱状破碎和表面破碎.Rayleigh-Taylor(R-T)不...为了研究液体横向射流在气膜作用下的破碎过程,采用背景光成像技术及VOF TO DPM方法进行了实验研究和仿真研究,模拟介质为水和空气.研究结果表明,液体射流在气膜作用下主要存在两种破碎过程:柱状破碎和表面破碎.Rayleigh-Taylor(R-T)不稳定性产生的表面波是液体射流发生柱状破碎的主要原因,气流穿透表面波的波谷导致射流柱破碎,破碎后的液丝沿流向逐渐发展呈带状分布.Kelvin-Helmholtz(K-H)不稳定性产生的表面波是液体射流发生表面破碎的主要原因,液丝和液滴从射流表面剥离.局部动量比对液体横向射流的破碎过程具有重要影响,当局部动量比较低时,液体射流的破碎由K-H不稳定性主导;随着局部动量比的增大液体射流的破碎逐渐由R-T不稳定性主导.液体射流的破碎长度及穿透深度均随局部动量比的增大而增大.展开更多
基金Supported by the National Natural Science Foundation of China(11172205,11372219,51176137)
文摘On account of limited knowledge of the breakup of power law liquid film, the process of its disintegration and atomization was studied by using a planar liquid film. A linear stability analysis was adopted to predict the breakup characteristics of the power law film. The predicting formulas of stripping breakup length and diameter of ligament were put forward presently. Through high-speed photography and laser light sheet illumination,different breakup characteristics of flat power law film under different conditions were derived. The characteristic dimension of breakup regimes were defined and extracted. The effects of several parameters(injection pressure,ambient pressure, nozzle structure and fluid property) on the stripping breakup length and spray angle were investigated. The results revealed that increasing both the velocity of liquid film and the ambient pressure facilitated the breakup of film, reduced the stripping breakup length and enlarged the spray angle in different extents. The comparison between theoretical and experimental results was conducted to validate the feasibility of the linear stability theory.
文摘为了研究液体横向射流在气膜作用下的破碎过程,采用背景光成像技术及VOF TO DPM方法进行了实验研究和仿真研究,模拟介质为水和空气.研究结果表明,液体射流在气膜作用下主要存在两种破碎过程:柱状破碎和表面破碎.Rayleigh-Taylor(R-T)不稳定性产生的表面波是液体射流发生柱状破碎的主要原因,气流穿透表面波的波谷导致射流柱破碎,破碎后的液丝沿流向逐渐发展呈带状分布.Kelvin-Helmholtz(K-H)不稳定性产生的表面波是液体射流发生表面破碎的主要原因,液丝和液滴从射流表面剥离.局部动量比对液体横向射流的破碎过程具有重要影响,当局部动量比较低时,液体射流的破碎由K-H不稳定性主导;随着局部动量比的增大液体射流的破碎逐渐由R-T不稳定性主导.液体射流的破碎长度及穿透深度均随局部动量比的增大而增大.