The organic Rankine cycle (ORC) is an effective way to recycle low temperature exhaust heat but pump for the ORC has several disadvantages such as great difficulty in manufacturing, easily-invited cavitations, low e...The organic Rankine cycle (ORC) is an effective way to recycle low temperature exhaust heat but pump for the ORC has several disadvantages such as great difficulty in manufacturing, easily-invited cavitations, low efficiency and high cost. Gas-liquid two-phase injector is a device without moving parts, in which steam is used to drive cold liquid from a pressure lower than the primary steam to a pressure higher than the primary steam. In this paper, the mechanical circulation pump was replaced with a gas-liquid injector. The effect of the evaporate temperature for the system was studied with the organic fluid R123. While this novel ORC can not only improves the energy utilization, but also be suitable for some occasions without power.展开更多
为了揭示敞口式离心喷嘴液膜填充及打开过程,采用两相界面追踪方法 VOF(volume of fluid)模拟了喷嘴内部及近喷口区域流动过程,计算得到的喷雾角和试验结果偏差不超过2%。计算结果表明:喷嘴内部填充过程中,自切向孔下游至喷嘴出口液膜...为了揭示敞口式离心喷嘴液膜填充及打开过程,采用两相界面追踪方法 VOF(volume of fluid)模拟了喷嘴内部及近喷口区域流动过程,计算得到的喷雾角和试验结果偏差不超过2%。计算结果表明:喷嘴内部填充过程中,自切向孔下游至喷嘴出口液膜厚度缓慢增加,在喷嘴出口处液膜厚度大幅度降低,呈非线性发展;相应地,切向孔截面空心涡经历了正方形-花瓣形-圆形的演化历程;喷口边缘处表面张力占主导,此时液膜较厚,因此液膜刚流出喷嘴时并没有立刻打开,而后变薄、失稳、脱落、破碎并部分聚合,随着时间推移,喷嘴出口液膜形态依次经历了铅笔形、洋葱形、郁金香形和完全发展形四种形态,与稳态下喷注压降改变时喷雾形态变化相一致。展开更多
文摘The organic Rankine cycle (ORC) is an effective way to recycle low temperature exhaust heat but pump for the ORC has several disadvantages such as great difficulty in manufacturing, easily-invited cavitations, low efficiency and high cost. Gas-liquid two-phase injector is a device without moving parts, in which steam is used to drive cold liquid from a pressure lower than the primary steam to a pressure higher than the primary steam. In this paper, the mechanical circulation pump was replaced with a gas-liquid injector. The effect of the evaporate temperature for the system was studied with the organic fluid R123. While this novel ORC can not only improves the energy utilization, but also be suitable for some occasions without power.
文摘为了揭示敞口式离心喷嘴液膜填充及打开过程,采用两相界面追踪方法 VOF(volume of fluid)模拟了喷嘴内部及近喷口区域流动过程,计算得到的喷雾角和试验结果偏差不超过2%。计算结果表明:喷嘴内部填充过程中,自切向孔下游至喷嘴出口液膜厚度缓慢增加,在喷嘴出口处液膜厚度大幅度降低,呈非线性发展;相应地,切向孔截面空心涡经历了正方形-花瓣形-圆形的演化历程;喷口边缘处表面张力占主导,此时液膜较厚,因此液膜刚流出喷嘴时并没有立刻打开,而后变薄、失稳、脱落、破碎并部分聚合,随着时间推移,喷嘴出口液膜形态依次经历了铅笔形、洋葱形、郁金香形和完全发展形四种形态,与稳态下喷注压降改变时喷雾形态变化相一致。