The Marangoni effect induced by mass transfer at the interface between two immiscible liquids displays important influence on laboratory and industrial operation of solvent extraction. A systematic numerical study of ...The Marangoni effect induced by mass transfer at the interface between two immiscible liquids displays important influence on laboratory and industrial operation of solvent extraction. A systematic numerical study of the two-dimensional Marangoni effect in a two liquid layer system was conducted. The linear relationship of the inter- facial tension versus the solute concentration was incorporated into a mathematical model accounting for liquid flow and mass transfer in both phases. The typical cases analyzed by Sternling & Scriven (AIChE J., 1959) using the linear instability theory were simulated bv the finite difference method and good agreement between the theory and the numerical simulation was observed. The simulation suggests that the Marangoni convection needs certain time to develop sufficiently in strength and scale to enhance the interphase mass transfer, the Marangoni effect is dynamic and transient, and remains at some stabilized level as long as the mass transfer driving force is kept con- stant. When certain level of shear is imposed at the interface as in most cases of practical significance, the Maran- goni effect is suppressed slightly but progressively as the shear is increased gradually. The present two-dimensional simulation of the Marangoni effect provides some insight into the underlying mechanism and also the basis for further theoretical study of the three-dimensional Marangoni effect in the real world and in chemical engineering applications.展开更多
This article presents the experimental investigation on instabilities of thermocapillary-buoyancy convection in the transition process in an open rectangular liquid layer subject to a horizontal temperature gradient. ...This article presents the experimental investigation on instabilities of thermocapillary-buoyancy convection in the transition process in an open rectangular liquid layer subject to a horizontal temperature gradient. In the experimental run,an infrared thermal imaging system was constructed to observe and record the surface wave of the rectangular liquid layer. It was found that there are distinct convection longitudinal rolls in the flow field in the thermocapillary-buoyancy convection transition process. There are different wave characterizations for liquid layers with different thicknesses. For sufficiently thin layers, oblique hydrothermal waves are observed, which was predicted by the linear-stability analysis of Smith & Davis in 1983. For thicker layers, the surface flow is distinct and intensified, which is because the buoyancy convection plays a dominant role and bulk fluid flow from hot wall to cold wall in the free surface of liquid layers. In addition, the spatiotemporal evolution analysis has been carried out to conclude the rule of the temperature field destabilization in the transition process.展开更多
The influence of the thickness of a covering liquid layer and its viscosity as well as the impact velocity on energy loss during the normal impact on a flat steel wall of spherical granules with a liquid layer was stu...The influence of the thickness of a covering liquid layer and its viscosity as well as the impact velocity on energy loss during the normal impact on a flat steel wall of spherical granules with a liquid layer was studied. Free-fall experiments were performed to obtain the restitution coefficient of elastic-plastic γ- Al2O3 granules by impact on the liquid layer, using aqueous solutions of hydroxypropyl methylcellulose with different concentrations for variation of viscosity (1-300 mPa s), In the presence of a liquid layer, increase of liquid viscosity decreases the restitution coefficient and the minimum thickness of the liquid layer at which the granule sticks to the wall. The measured restitution coefficients were compared with experiments performed without liquid layer. In contrast to the dry restitution coefficient, due to viscous losses at lower impact velocity, higher energy dissipation was obtained, A rational explanation for the effects obtained was given by results of numerically solved force and energy balances for a granule impact on a liquid layer on the wall. The model takes into account forces acting on the granule including viscous, surface tension, capillary, contact, drag, buoyancy and gravitational forces. Good agreement between simulations and experiments has been achieved.展开更多
The "solidified liquid layer" model has been examined using a quartz crystal microbalance(QCM) with a polymeric matrix.The model is shown to give a reasonable explanation for the following experimental obser...The "solidified liquid layer" model has been examined using a quartz crystal microbalance(QCM) with a polymeric matrix.The model is shown to give a reasonable explanation for the following experimental observations:(i) The opposite response of the QCM and surface plasmon resonance(SPR) for the activation process;(ii) the marked difference in the responses for IgG/anti-IgG interaction between QCM and SPR.Theoretical analysis and experimental results indicated that QCM is sensitive to the thickness change of the "solidified liquid layer" but not the mass of captured biomolecules(i.e.,the immobilized mass),implying caution must be taken in interpreting QCM results.展开更多
The mechanism for transporting liquid from the bottom of the pipe to the top still to be established in the prediction of the film thickness distribution in horizontal annular two-phase flow. To resolve this issue, us...The mechanism for transporting liquid from the bottom of the pipe to the top still to be established in the prediction of the film thickness distribution in horizontal annular two-phase flow. To resolve this issue, using five parallel-wire conductance probes, time records of local liquid film thickness at five circumferential positions were collected. The characteristics of circumferential liquid film thickness profiles and its variation with gas and liquid velocities were obtained. The basic features of probability distribution function, probability density function, auto-correlation, cross-correlation and power spectrum density function of the disturbance waves in angular flow were studied respectively. The characteristics of circumferential profiles of disturbance waves and its variation with gas and liquid velocities were presented.展开更多
Based on elastic wave propagation theory, the dispersion equation for a thin anisotropic plate (such as commonly used Zinc okide in micro-transducers) bordered with liquid layers is derived. Higher symmetry crystals, ...Based on elastic wave propagation theory, the dispersion equation for a thin anisotropic plate (such as commonly used Zinc okide in micro-transducers) bordered with liquid layers is derived. Higher symmetry crystals, such as orthorhombic, tetragonal, cubic, isotropic, are included in this analysis as well. For the case of one liquid layer loading, numerical calcu- lations show that the phase velocity changes periodically with the thickness of the liquld layer. When the thickness 2d of the anisotropic plate is very small, mass sensing application of Ao mode Lamb wave is also discussed.展开更多
In 1999, the space experiments on the Marangoni convection and thermocapillary convection in a system of two immiscible liquid layers in microgravity environment were conducted on board the Chinese scientific satellit...In 1999, the space experiments on the Marangoni convection and thermocapillary convection in a system of two immiscible liquid layers in microgravity environment were conducted on board the Chinese scientific satellite SJ-5. A new system of two-layer liquids such as FC-70 liquid and paraffin was used successfully, with the paraffin melted in the space. Two different test-cells are subjected to a temperature gradient perpendicular or parallel to the interface to study the Marangoni convection and thermocapillary convection, respectively. The experimental data obtained in the first Chinese space experiment of fluid are presented. Two-dimensional numerical simulations of thermocapillary convections are carried out using SIMPLEC method .A reasonable agreement between the experimental investigation and the numerical results is obtained.展开更多
Artificial neural networks (ANN), being a sophisticated type of information processing system by imitating the neural system of human brain, can be used to investigate the effects of concentration of flux solution, te...Artificial neural networks (ANN), being a sophisticated type of information processing system by imitating the neural system of human brain, can be used to investigate the effects of concentration of flux solution, temperature of liquid aluminium, temperture of tools and pressure on thickness of the intermetallic layer at the interface between steel and aluminium under solid-liquid pressure bonding of steel and aluminium perfectly. The optimum thickness has been determined according to the value of the optimum shearing strength.展开更多
Liquid-liquid extraction-thin layer chromatography (LLE-TLC) has been a common and routine combined method for detection of drugs in biological materials. Solid-phase extraction (SPE) is gradually replacing the tr...Liquid-liquid extraction-thin layer chromatography (LLE-TLC) has been a common and routine combined method for detection of drugs in biological materials. Solid-phase extraction (SPE) is gradually replacing the tra- ditional LLE method. High performance thin layer chromatography (HPTLC) has several advantages over TLC. The present work studied the higher efficiency of a new SPE-HPTLC method over that of a routine LLE-TLC method, in extraction and detection of urinary morphine. Fifty-eight urine samples, primarily identified as mor- phine-positive samples by a strip test, 'were re-screened by LLE-TLC and SPE-HPTLC. The results of LLE-TLC and SPE-HPTLC were then compared with each other. The results showed that the SPE-HPTLC detected 74% of total samples as morphine-positive samples whereas the LLE-TLC detected 48% of the same samples. We further discussed the effect of codeine abuse on TLC analysis of urinary morphine. Regarding the importance of morphine detection in urine, the present combined SPE-HPTLC method is suggested as a replacement method for detection of urinary morphine by many reference laboratories.展开更多
The effect of an adsorbed anionic surfactant sodium dodecyl benzene sulfonate (SDBS) on electron transfer (ET) reaction between ferricyanide aqueous solution and decamethylferrocene (DMFc) located on the adjacen...The effect of an adsorbed anionic surfactant sodium dodecyl benzene sulfonate (SDBS) on electron transfer (ET) reaction between ferricyanide aqueous solution and decamethylferrocene (DMFc) located on the adjacent organic phase was investigated for the first time by thin layer method. The adsorption of SDBS at the interface resulted in a decay in the cathodic plateau current of bimolecular reaction with increasing concentrations of SDBS in aqueous phase. However, the rate constant of electron transfer (ket) increased monotonically as the SDBS concentrations increased from 0 to 200 p, moFL. The experimental results showed that SDBS formed patches on the interface and influenced the structure of electrical double layer. 2009 Xiao Quan Lu. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
Molecular dynamics (MD) simulations are performed to explore the layering structure and liquid-liquid transition of liquid water confined between two graphene sheets with a varied distance at different pressures. Bo...Molecular dynamics (MD) simulations are performed to explore the layering structure and liquid-liquid transition of liquid water confined between two graphene sheets with a varied distance at different pressures. Both the size of nanoslit and pressure could cause the layering and liquid-liquid transition of the confined water. With increase of pressure and the nanoslit's size, the confined water could have a more obvious layering. In addition, the neighboring water molecules firstly form chain structure, then will transform into square structure, and finally become triangle with increase of pressure. These results throw light on layering and liquid-liquid transition of water confined between two graphene sheets.展开更多
The layer structure of low-carbon steel containing RE by high-temperature (T>1200 ℃) carburizing of liquid cast-iron was studied and the diffusion activation energy of carbon was calculated by metallographic micr...The layer structure of low-carbon steel containing RE by high-temperature (T>1200 ℃) carburizing of liquid cast-iron was studied and the diffusion activation energy of carbon was calculated by metallographic microscpe, chemical analysis etc. The result shows that the technology of carburizing in liquid cast-iron can expedite caburization distinctly and changes the carburizing layer structure. The carburizing rate is 60~80 times of that of the traditional technology, and there is about 43% decrease in the activation energy compared with gas-carburization. In outer structure layer, cementite is formed simultaneously both on the crystal boundary reticularly and inside the crystal grains stripedly. In inner carburizing layer, there is undissolved blocky ferrite in reticular cementite. Besides, rare earth element can expedite carburization process.展开更多
Objectives of the research to present a modern theory of water purification for multiple purposes entitled “a novelties filtration theory of liquid chromatography-mass spectrometry” is an exceedingly sensitive and s...Objectives of the research to present a modern theory of water purification for multiple purposes entitled “a novelties filtration theory of liquid chromatography-mass spectrometry” is an exceedingly sensitive and specific analytical technique in volume layers woven fabrics that can precisely determine the identities and quantities of compounds within volume Nanotube of cotton filament of layers woven fabrics. The problems are that the filters in the local and international markets have increased complications in configuration, installation and cost without reaching the efficiency that humanity hopes. Throw materials and methods the chromatography-mass spectrometry in layers woven fabrics, and throw the nanotube of cotton filament for purification of water dyes and smells. Industry, in which mass spectrometry is a convenient, versatile method for characterization and identification of process throw the Nanotube of cotton filament for purification of water dyes and smells. Results came up with a theme “innovations in textiles”, and also, for characterization of fibers and contaminants of the fabrics. Additive manufacturing in layers woven fabrics, are the processes used to synthesize a volume object under computer control with successive material layers that have been used and highlighted. The conclusions has included chromatography-mass spectrometry drop, physico-chemical, biological, combined physical-biological and chemical-biological treatment processes recently being developed to meet Jet-filtration, the strict discharging limits set by ASTM standards. Some important aspects of both qualitative and quantitative data analysis have been described and the power of using mass profiles to enhance selectivity and sensitivity has been demonstrated.展开更多
[Objectives] To better control the quality of Nuhuang Fuzheng Oral Liquid and study the main component Cuscuta chinensis Lam.by Thin Layer Chromatography. [Methods] Through changing the treatment methods of the test s...[Objectives] To better control the quality of Nuhuang Fuzheng Oral Liquid and study the main component Cuscuta chinensis Lam.by Thin Layer Chromatography. [Methods] Through changing the treatment methods of the test sample solution,proportion of the developing solvent and sample application volume,taking the spot resolution,definition,and Rf value,optimal Thin Layer Chromatography conditions were screened for Cuscuta chinensis Lam. [Results] After the test sample solution passing the neutral alumina column,it was extracted two times using the ethyl acetate. Methanol was added to dissolve. Benzene-ethyl acetate-formic acid( 5∶5∶2.5) was used as developing solvent.And ammonia fumigation was carried out to develop color. In the thin layer chromatograph obtained through these conditions,Nuhuang Fuzheng Oral Liquid test sample solution showed the same stripe in the same position of the control drug chromatogram and there was no obvious tailing phenomenon and the spot was clear. [Conclusions] The thin layer chromatography identification conditions can be used as the method for quality control of Cuscuta chinensis Lam. in Nuhuang Fuzheng Oral Liquid.展开更多
[Objectives] To screen the identification conditions of citric acid in Wuhuang Oral Liquid by thin layer chromatography,and establish the quality control method for citric acid in Wuhuang Oral Liquid.[Methods] Differe...[Objectives] To screen the identification conditions of citric acid in Wuhuang Oral Liquid by thin layer chromatography,and establish the quality control method for citric acid in Wuhuang Oral Liquid.[Methods] Different treatment methods were adopted for test sample,developing agent,and drying time,thin layer chromatography separation condition and spot definition were taken as indicators to conduct experiment,to select optimal thin layer identification method. [Results] Methanol was used as the extraction solvent,ultrasonic treatment,ether extraction,dissolution by anhydrous ethanol as treatment conditions of test sample; upper solution of butyl acetate-formic acid-water(4 ∶ 2 ∶ 2) after placing one hour was taken as developing agent; 0. 1% bromocresol green(BCG) as the developer; when developing the color in 3 hours after development,in thin layer chromatograph,there appeared the same strip in the same position of test sample of Wuhuang ORAL Liquid and control substance,no obvious trailing phenomenon,and the color was uniform and clear.[Conclusions]The thin layer chromatography identification conditions can be used as the method for quality control of Wuhuang Oral Liquid.展开更多
In this work, 4-methoxylcinnamoyl chloride was reacted with a commercial hyperbranched polymer (Boltom-TM H30) to prepare a hyperbranched photosensitive polymer (H30-Ci). The polymer was characterized by UV absorp...In this work, 4-methoxylcinnamoyl chloride was reacted with a commercial hyperbranched polymer (Boltom-TM H30) to prepare a hyperbranched photosensitive polymer (H30-Ci). The polymer was characterized by UV absorption spectrum and 1H- NMR spectrum. After processed by Linearly Polarized Polymerization (LPP) method, the spin-coated films of H30-Ci were used as photo-alignment layers to assemble liquid crystal (LC) cells containing nematic liquid crystal (5CB). The observation by polarized microscope showed that the H30-Ci blended with a linear polymer (BP-AN-Ci) photo-alignment layers could align LC molecules in a very uniform way.展开更多
The bonding of solid steel plate to liquid aluminum was studied using rapidsolidification. The surface of solid steel plate was defatted, descaled, immersed (in K_2ZrF_6 fluxaqueous solution) and stoved. In order to d...The bonding of solid steel plate to liquid aluminum was studied using rapidsolidification. The surface of solid steel plate was defatted, descaled, immersed (in K_2ZrF_6 fluxaqueous solution) and stoved. In order to determine the thickness of Fe-Al compound layer at theinterface of steel-aluminum solid to liquid bonding under rapid solidification, the interface ofbonding plate was investigated by SEM (Scanning Electron Microscope) experiment. The relationshipbetween bonding parameters (such as preheat temperature of steel plate, temperature of aluminumliquid and bonding time) and thickness of Fe-Al compound layer at the interface was established byartificial neural networks (ANN) perfectly. The maximum of relative error between the output and thedesired output of the ANN is only 5.4%. From the bonding parameters for the largest interfacialshear strength of bonding plate (226℃ for preheat temperature of steel plate, 723℃ for temperatureof aluminum liquid and 15.8 s for bonding time), the reasonable thickness of Fe-Al compound layer10.8 μm was got.展开更多
A novel fabrication process for micro patterns with curvature was introduced. The curved structures were made by compensating rectangular micro structures with liquid photoresist layer. Because of the surface tension ...A novel fabrication process for micro patterns with curvature was introduced. The curved structures were made by compensating rectangular micro structures with liquid photoresist layer. Because of the surface tension of the liquid in micro scale, various shapes of meniscus can he made on the micro channels. The micro channels were made on the silicon suhstrate in advance, and then the liquid layer was coated on the micro channels. From the nature of liquid behavior, the curved patterns with smooth surface are obtained, which cannot be made easily with the conventional mechanical machining, as well as with the microfabrication processes, such as wet and dry etching. With this principle, it is expected that the smooth and curved surfaces can be made by simple processes and the results can be applied widely, such as optical patterns.展开更多
The performance of an electrocatalyst, which is needed e.g. for key energy conversion reactions such as hydrogen evolution, oxygen reduction or CO2 reduction, is determined not only by the inherent structure of active...The performance of an electrocatalyst, which is needed e.g. for key energy conversion reactions such as hydrogen evolution, oxygen reduction or CO2 reduction, is determined not only by the inherent structure of active sites but also by the properties of the interfacial structures at catalytic surfaces. Ionic liquids(ILs), as a unique class of metal salts with melting point below 100 ℃, present themselves as ideal modulators for manipulations of the interfacial structures. Due to their excellent properties such as good chemical stability, high ionic conductivity, wide electrochemical windows and tunable solvent properties the performance of electrocatalysts can be substantially improved through ILs. In the current minireview, we highlight the critical role of the IL phase at the microenvironments created by the IL, the liquid electrolyte, catalytic nanoparticles and/or support materials, by detailing the promotional effect of IL in electrocatalysis as reaction media, binders, and surface modifiers. Updated exemplary applications of IL in electrocatalysis are given and moreover, the latest developments of IL modified electrocatalysts following the "Solid Catalyst with Ionic Liquid Layer(SCILL)" concept are presented.展开更多
基金Supported by the National Natural Science Foundation of China (20490206, 20576133, 20676134) and Petro China.
文摘The Marangoni effect induced by mass transfer at the interface between two immiscible liquids displays important influence on laboratory and industrial operation of solvent extraction. A systematic numerical study of the two-dimensional Marangoni effect in a two liquid layer system was conducted. The linear relationship of the inter- facial tension versus the solute concentration was incorporated into a mathematical model accounting for liquid flow and mass transfer in both phases. The typical cases analyzed by Sternling & Scriven (AIChE J., 1959) using the linear instability theory were simulated bv the finite difference method and good agreement between the theory and the numerical simulation was observed. The simulation suggests that the Marangoni convection needs certain time to develop sufficiently in strength and scale to enhance the interphase mass transfer, the Marangoni effect is dynamic and transient, and remains at some stabilized level as long as the mass transfer driving force is kept con- stant. When certain level of shear is imposed at the interface as in most cases of practical significance, the Maran- goni effect is suppressed slightly but progressively as the shear is increased gradually. The present two-dimensional simulation of the Marangoni effect provides some insight into the underlying mechanism and also the basis for further theoretical study of the three-dimensional Marangoni effect in the real world and in chemical engineering applications.
基金Project supported by the Strategic Priority Research Program on Space Science,Chinese Academy of Sciences:SJ-10 Recoverable Scientific Experiment Satellite(Grant Nos.XDA04020405 and XDA04020202-05)the China Manned Space Engineering program(TG-2)+1 种基金Cooperative Research Project between China and Russiathe National Natural Science Foundation of China(Grant No.11372328)
文摘This article presents the experimental investigation on instabilities of thermocapillary-buoyancy convection in the transition process in an open rectangular liquid layer subject to a horizontal temperature gradient. In the experimental run,an infrared thermal imaging system was constructed to observe and record the surface wave of the rectangular liquid layer. It was found that there are distinct convection longitudinal rolls in the flow field in the thermocapillary-buoyancy convection transition process. There are different wave characterizations for liquid layers with different thicknesses. For sufficiently thin layers, oblique hydrothermal waves are observed, which was predicted by the linear-stability analysis of Smith & Davis in 1983. For thicker layers, the surface flow is distinct and intensified, which is because the buoyancy convection plays a dominant role and bulk fluid flow from hot wall to cold wall in the free surface of liquid layers. In addition, the spatiotemporal evolution analysis has been carried out to conclude the rule of the temperature field destabilization in the transition process.
文摘The influence of the thickness of a covering liquid layer and its viscosity as well as the impact velocity on energy loss during the normal impact on a flat steel wall of spherical granules with a liquid layer was studied. Free-fall experiments were performed to obtain the restitution coefficient of elastic-plastic γ- Al2O3 granules by impact on the liquid layer, using aqueous solutions of hydroxypropyl methylcellulose with different concentrations for variation of viscosity (1-300 mPa s), In the presence of a liquid layer, increase of liquid viscosity decreases the restitution coefficient and the minimum thickness of the liquid layer at which the granule sticks to the wall. The measured restitution coefficients were compared with experiments performed without liquid layer. In contrast to the dry restitution coefficient, due to viscous losses at lower impact velocity, higher energy dissipation was obtained, A rational explanation for the effects obtained was given by results of numerically solved force and energy balances for a granule impact on a liquid layer on the wall. The model takes into account forces acting on the granule including viscous, surface tension, capillary, contact, drag, buoyancy and gravitational forces. Good agreement between simulations and experiments has been achieved.
基金supported by the 100 Talents Programme of Chinese Academy of Sciences(08BM031001)the Fok Ying Tung Education Foundation (114013) to H.M.the National Basic Research Program of China (2009CB320300)
文摘The "solidified liquid layer" model has been examined using a quartz crystal microbalance(QCM) with a polymeric matrix.The model is shown to give a reasonable explanation for the following experimental observations:(i) The opposite response of the QCM and surface plasmon resonance(SPR) for the activation process;(ii) the marked difference in the responses for IgG/anti-IgG interaction between QCM and SPR.Theoretical analysis and experimental results indicated that QCM is sensitive to the thickness change of the "solidified liquid layer" but not the mass of captured biomolecules(i.e.,the immobilized mass),implying caution must be taken in interpreting QCM results.
文摘The mechanism for transporting liquid from the bottom of the pipe to the top still to be established in the prediction of the film thickness distribution in horizontal annular two-phase flow. To resolve this issue, using five parallel-wire conductance probes, time records of local liquid film thickness at five circumferential positions were collected. The characteristics of circumferential liquid film thickness profiles and its variation with gas and liquid velocities were obtained. The basic features of probability distribution function, probability density function, auto-correlation, cross-correlation and power spectrum density function of the disturbance waves in angular flow were studied respectively. The characteristics of circumferential profiles of disturbance waves and its variation with gas and liquid velocities were presented.
基金supported by the National Natural Science Foundation of China.
文摘Based on elastic wave propagation theory, the dispersion equation for a thin anisotropic plate (such as commonly used Zinc okide in micro-transducers) bordered with liquid layers is derived. Higher symmetry crystals, such as orthorhombic, tetragonal, cubic, isotropic, are included in this analysis as well. For the case of one liquid layer loading, numerical calcu- lations show that the phase velocity changes periodically with the thickness of the liquld layer. When the thickness 2d of the anisotropic plate is very small, mass sensing application of Ao mode Lamb wave is also discussed.
基金This work was partly supported by the 95-yu-34 of the Department of Science and Technology and the National Natural Science Foundation of China (Grant No. 19789201) Q. S. Liu wishes to thank Prof. J. C. Legros and Dr. Ph.Gerios for their helpful discussi
文摘In 1999, the space experiments on the Marangoni convection and thermocapillary convection in a system of two immiscible liquid layers in microgravity environment were conducted on board the Chinese scientific satellite SJ-5. A new system of two-layer liquids such as FC-70 liquid and paraffin was used successfully, with the paraffin melted in the space. Two different test-cells are subjected to a temperature gradient perpendicular or parallel to the interface to study the Marangoni convection and thermocapillary convection, respectively. The experimental data obtained in the first Chinese space experiment of fluid are presented. Two-dimensional numerical simulations of thermocapillary convections are carried out using SIMPLEC method .A reasonable agreement between the experimental investigation and the numerical results is obtained.
文摘Artificial neural networks (ANN), being a sophisticated type of information processing system by imitating the neural system of human brain, can be used to investigate the effects of concentration of flux solution, temperature of liquid aluminium, temperture of tools and pressure on thickness of the intermetallic layer at the interface between steel and aluminium under solid-liquid pressure bonding of steel and aluminium perfectly. The optimum thickness has been determined according to the value of the optimum shearing strength.
文摘Liquid-liquid extraction-thin layer chromatography (LLE-TLC) has been a common and routine combined method for detection of drugs in biological materials. Solid-phase extraction (SPE) is gradually replacing the tra- ditional LLE method. High performance thin layer chromatography (HPTLC) has several advantages over TLC. The present work studied the higher efficiency of a new SPE-HPTLC method over that of a routine LLE-TLC method, in extraction and detection of urinary morphine. Fifty-eight urine samples, primarily identified as mor- phine-positive samples by a strip test, 'were re-screened by LLE-TLC and SPE-HPTLC. The results of LLE-TLC and SPE-HPTLC were then compared with each other. The results showed that the SPE-HPTLC detected 74% of total samples as morphine-positive samples whereas the LLE-TLC detected 48% of the same samples. We further discussed the effect of codeine abuse on TLC analysis of urinary morphine. Regarding the importance of morphine detection in urine, the present combined SPE-HPTLC method is suggested as a replacement method for detection of urinary morphine by many reference laboratories.
基金supported by the National Science Foundation of China(No.20775060 and No.20875077)the National Science Foundation of Gansu(No.0701RJZA109 and No.0803RJZA105)and the Key Laboratory of Polymer Materials of Gansu Province
文摘The effect of an adsorbed anionic surfactant sodium dodecyl benzene sulfonate (SDBS) on electron transfer (ET) reaction between ferricyanide aqueous solution and decamethylferrocene (DMFc) located on the adjacent organic phase was investigated for the first time by thin layer method. The adsorption of SDBS at the interface resulted in a decay in the cathodic plateau current of bimolecular reaction with increasing concentrations of SDBS in aqueous phase. However, the rate constant of electron transfer (ket) increased monotonically as the SDBS concentrations increased from 0 to 200 p, moFL. The experimental results showed that SDBS formed patches on the interface and influenced the structure of electrical double layer. 2009 Xiao Quan Lu. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
基金supported by the National Natural Science Foundation of China(Grant No.51271100)the National Key Research Program of China(Grant No.2016YFB0300501)the Taishan Scholar Construction Engineering
文摘Molecular dynamics (MD) simulations are performed to explore the layering structure and liquid-liquid transition of liquid water confined between two graphene sheets with a varied distance at different pressures. Both the size of nanoslit and pressure could cause the layering and liquid-liquid transition of the confined water. With increase of pressure and the nanoslit's size, the confined water could have a more obvious layering. In addition, the neighboring water molecules firstly form chain structure, then will transform into square structure, and finally become triangle with increase of pressure. These results throw light on layering and liquid-liquid transition of water confined between two graphene sheets.
文摘The layer structure of low-carbon steel containing RE by high-temperature (T>1200 ℃) carburizing of liquid cast-iron was studied and the diffusion activation energy of carbon was calculated by metallographic microscpe, chemical analysis etc. The result shows that the technology of carburizing in liquid cast-iron can expedite caburization distinctly and changes the carburizing layer structure. The carburizing rate is 60~80 times of that of the traditional technology, and there is about 43% decrease in the activation energy compared with gas-carburization. In outer structure layer, cementite is formed simultaneously both on the crystal boundary reticularly and inside the crystal grains stripedly. In inner carburizing layer, there is undissolved blocky ferrite in reticular cementite. Besides, rare earth element can expedite carburization process.
文摘Objectives of the research to present a modern theory of water purification for multiple purposes entitled “a novelties filtration theory of liquid chromatography-mass spectrometry” is an exceedingly sensitive and specific analytical technique in volume layers woven fabrics that can precisely determine the identities and quantities of compounds within volume Nanotube of cotton filament of layers woven fabrics. The problems are that the filters in the local and international markets have increased complications in configuration, installation and cost without reaching the efficiency that humanity hopes. Throw materials and methods the chromatography-mass spectrometry in layers woven fabrics, and throw the nanotube of cotton filament for purification of water dyes and smells. Industry, in which mass spectrometry is a convenient, versatile method for characterization and identification of process throw the Nanotube of cotton filament for purification of water dyes and smells. Results came up with a theme “innovations in textiles”, and also, for characterization of fibers and contaminants of the fabrics. Additive manufacturing in layers woven fabrics, are the processes used to synthesize a volume object under computer control with successive material layers that have been used and highlighted. The conclusions has included chromatography-mass spectrometry drop, physico-chemical, biological, combined physical-biological and chemical-biological treatment processes recently being developed to meet Jet-filtration, the strict discharging limits set by ASTM standards. Some important aspects of both qualitative and quantitative data analysis have been described and the power of using mass profiles to enhance selectivity and sensitivity has been demonstrated.
基金Supported by Clinical Study and New Veterinary Drug Declaration of Lianmei Zhili Powder and Nuhuang Granule(17403)
文摘[Objectives] To better control the quality of Nuhuang Fuzheng Oral Liquid and study the main component Cuscuta chinensis Lam.by Thin Layer Chromatography. [Methods] Through changing the treatment methods of the test sample solution,proportion of the developing solvent and sample application volume,taking the spot resolution,definition,and Rf value,optimal Thin Layer Chromatography conditions were screened for Cuscuta chinensis Lam. [Results] After the test sample solution passing the neutral alumina column,it was extracted two times using the ethyl acetate. Methanol was added to dissolve. Benzene-ethyl acetate-formic acid( 5∶5∶2.5) was used as developing solvent.And ammonia fumigation was carried out to develop color. In the thin layer chromatograph obtained through these conditions,Nuhuang Fuzheng Oral Liquid test sample solution showed the same stripe in the same position of the control drug chromatogram and there was no obvious tailing phenomenon and the spot was clear. [Conclusions] The thin layer chromatography identification conditions can be used as the method for quality control of Cuscuta chinensis Lam. in Nuhuang Fuzheng Oral Liquid.
基金Supported by Transformation of Patented Products of Prevention and Control of Chicken Virus Diseases by Traditional Chinese Veterinary Medicines(cstc-2014jcsf-nycgzh A10002)
文摘[Objectives] To screen the identification conditions of citric acid in Wuhuang Oral Liquid by thin layer chromatography,and establish the quality control method for citric acid in Wuhuang Oral Liquid.[Methods] Different treatment methods were adopted for test sample,developing agent,and drying time,thin layer chromatography separation condition and spot definition were taken as indicators to conduct experiment,to select optimal thin layer identification method. [Results] Methanol was used as the extraction solvent,ultrasonic treatment,ether extraction,dissolution by anhydrous ethanol as treatment conditions of test sample; upper solution of butyl acetate-formic acid-water(4 ∶ 2 ∶ 2) after placing one hour was taken as developing agent; 0. 1% bromocresol green(BCG) as the developer; when developing the color in 3 hours after development,in thin layer chromatograph,there appeared the same strip in the same position of test sample of Wuhuang ORAL Liquid and control substance,no obvious trailing phenomenon,and the color was uniform and clear.[Conclusions]The thin layer chromatography identification conditions can be used as the method for quality control of Wuhuang Oral Liquid.
基金the National Natural Science Foundation of China (No. 50103005)Thanks for Professor Shi Wenfang of University of Science and Technology of China to supply the hyperbranched polymer(H30).
文摘In this work, 4-methoxylcinnamoyl chloride was reacted with a commercial hyperbranched polymer (Boltom-TM H30) to prepare a hyperbranched photosensitive polymer (H30-Ci). The polymer was characterized by UV absorption spectrum and 1H- NMR spectrum. After processed by Linearly Polarized Polymerization (LPP) method, the spin-coated films of H30-Ci were used as photo-alignment layers to assemble liquid crystal (LC) cells containing nematic liquid crystal (5CB). The observation by polarized microscope showed that the H30-Ci blended with a linear polymer (BP-AN-Ci) photo-alignment layers could align LC molecules in a very uniform way.
基金This project is financially supported by National Natural Science Foundation of China (No.50274047) and Advanced Technical Committee of China(No. 715-009-060)
文摘The bonding of solid steel plate to liquid aluminum was studied using rapidsolidification. The surface of solid steel plate was defatted, descaled, immersed (in K_2ZrF_6 fluxaqueous solution) and stoved. In order to determine the thickness of Fe-Al compound layer at theinterface of steel-aluminum solid to liquid bonding under rapid solidification, the interface ofbonding plate was investigated by SEM (Scanning Electron Microscope) experiment. The relationshipbetween bonding parameters (such as preheat temperature of steel plate, temperature of aluminumliquid and bonding time) and thickness of Fe-Al compound layer at the interface was established byartificial neural networks (ANN) perfectly. The maximum of relative error between the output and thedesired output of the ANN is only 5.4%. From the bonding parameters for the largest interfacialshear strength of bonding plate (226℃ for preheat temperature of steel plate, 723℃ for temperatureof aluminum liquid and 15.8 s for bonding time), the reasonable thickness of Fe-Al compound layer10.8 μm was got.
基金the support of Ministry of Knowledge and Economy through Strategic Technology Development ProjectConversing Research Center Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology
文摘A novel fabrication process for micro patterns with curvature was introduced. The curved structures were made by compensating rectangular micro structures with liquid photoresist layer. Because of the surface tension of the liquid in micro scale, various shapes of meniscus can he made on the micro channels. The micro channels were made on the silicon suhstrate in advance, and then the liquid layer was coated on the micro channels. From the nature of liquid behavior, the curved patterns with smooth surface are obtained, which cannot be made easily with the conventional mechanical machining, as well as with the microfabrication processes, such as wet and dry etching. With this principle, it is expected that the smooth and curved surfaces can be made by simple processes and the results can be applied widely, such as optical patterns.
基金supported by the funding of the German Research Council (DFG), which, within the framework of its Excellence Initiative, supports the Cluster of Excellence “Engineering of Advanced Materials” (www.eam.uni-erlangen.de) at the University of Erlangen-Nürnberg
文摘The performance of an electrocatalyst, which is needed e.g. for key energy conversion reactions such as hydrogen evolution, oxygen reduction or CO2 reduction, is determined not only by the inherent structure of active sites but also by the properties of the interfacial structures at catalytic surfaces. Ionic liquids(ILs), as a unique class of metal salts with melting point below 100 ℃, present themselves as ideal modulators for manipulations of the interfacial structures. Due to their excellent properties such as good chemical stability, high ionic conductivity, wide electrochemical windows and tunable solvent properties the performance of electrocatalysts can be substantially improved through ILs. In the current minireview, we highlight the critical role of the IL phase at the microenvironments created by the IL, the liquid electrolyte, catalytic nanoparticles and/or support materials, by detailing the promotional effect of IL in electrocatalysis as reaction media, binders, and surface modifiers. Updated exemplary applications of IL in electrocatalysis are given and moreover, the latest developments of IL modified electrocatalysts following the "Solid Catalyst with Ionic Liquid Layer(SCILL)" concept are presented.