Direct simulation of 3-D MHD(magnetohydrodynamics) flows in liquid metal fusion blanket with flow channel insert(FCI) has been conducted.Two kinds of pressure equilibrium slot (PES) in FCI,which are used to balance th...Direct simulation of 3-D MHD(magnetohydrodynamics) flows in liquid metal fusion blanket with flow channel insert(FCI) has been conducted.Two kinds of pressure equilibrium slot (PES) in FCI,which are used to balance the pressure difference between the inside and outside of FCI,are considered with a slot in Hartmann wall or a slot in side wall,respectively.The velocity and pressure distribution of FCI made of SiC/SiC_f are numerically studied to illustrate the 3-D MHD flow effects,which clearly show that the flows in fusion blanket with FCI are typical three-dimensional issues and the assumption of 2-D fully developed flows is not the real physical problem of the MHD flows in dual-coolant liquid metal fusion blanket.The optimum opening location of PES has been analyzed based on the 3-D pressure and velocity distributions.展开更多
Liquid lead-lithium (Pb-16Li) is of primary interest as one of the candidate materials for tritium breeder, neutron multiplier and coolant fluid in liquid metal blanket concepts relevant to fusion power plants. For an...Liquid lead-lithium (Pb-16Li) is of primary interest as one of the candidate materials for tritium breeder, neutron multiplier and coolant fluid in liquid metal blanket concepts relevant to fusion power plants. For an effective and reliable operation of such high temperature liquid metal systems, monitoring and control of critical process parameters is essential. However, limited operational experience coupled with high temperature operating conditions and corrosive nature of Pb-16Li severely limited application of commercially available diagnostic tools. This paper illustrates indigenous calibration test facility designs and experimental methods used to develop non-contact configuration level diagnostics using pulse radar level sensor, wetted configuration pressure diagnostics using diaphragm seal type pressure sensor and bulk temperature diagnostics with temperature profiling for high temperature, high pressure liquid Pb and Pb-16Li applications. Calibration check of these sensors was performed using analytical methods, at temperature between 380°C - 400°C and pressure upto 1 MPa (g). Reliability and performance validation were achieved through long duration testing of sensors in liquid Pb and liquid Pb-16Li environment for over 1000 hour. Estimated deviation for radar level sensor lies within [−3.36 mm, +13.64 mm] and the estimated error for pressure sensor lies within 1.1% of calibrated span over the entire test duration. Results obtained and critical observations from these tests are presented in this paper.展开更多
Consequent on MHD geometry sensibility phenomena was measured in an accident case;the more detail experiments have been conducted at the liquid metal experimental loop upgrade facility (LMEL-U). The experimental resul...Consequent on MHD geometry sensibility phenomena was measured in an accident case;the more detail experiments have been conducted at the liquid metal experimental loop upgrade facility (LMEL-U). The experimental results indicate that MHD pressure drop can be greatly reduced in the special designed ducts. Base on the experimental data, an innovation channel concept (tentatively called as the secondary flow channel, short in “S-channel”) is addressed as a reducing MHD pressure drop channel for the application of a liquid metal blanket system in fusion reactor. It may be a dawn for solving MHD pressure drop key issue of liquid metal blanket system.展开更多
This study performs a numerical analysis of three-dimensional liquid metal(LM) magnetohydrodynamic(MHD) flows in a square duct with an FCI in a non-uniform magnetic field. The current study predicts detailed informati...This study performs a numerical analysis of three-dimensional liquid metal(LM) magnetohydrodynamic(MHD) flows in a square duct with an FCI in a non-uniform magnetic field. The current study predicts detailed information on flow velocity, Lorentz force, pressure, current and electric potential of MHD duct flows for different Hartmann numbers. Also, the effect of the electric conductivity of FCI on the pressure drop along the main flow direction in a non-uniform magnetic field is examined. The present study investigates the features of LM MHD flows in consideration of the interdependency among the flow variables.展开更多
基金supported by National Natural Science Foundation of China with grant Nos.10872212,50936006National Magnetic Confinement Fusion Science Program in China with grant No.2009GB10401
文摘Direct simulation of 3-D MHD(magnetohydrodynamics) flows in liquid metal fusion blanket with flow channel insert(FCI) has been conducted.Two kinds of pressure equilibrium slot (PES) in FCI,which are used to balance the pressure difference between the inside and outside of FCI,are considered with a slot in Hartmann wall or a slot in side wall,respectively.The velocity and pressure distribution of FCI made of SiC/SiC_f are numerically studied to illustrate the 3-D MHD flow effects,which clearly show that the flows in fusion blanket with FCI are typical three-dimensional issues and the assumption of 2-D fully developed flows is not the real physical problem of the MHD flows in dual-coolant liquid metal fusion blanket.The optimum opening location of PES has been analyzed based on the 3-D pressure and velocity distributions.
文摘Liquid lead-lithium (Pb-16Li) is of primary interest as one of the candidate materials for tritium breeder, neutron multiplier and coolant fluid in liquid metal blanket concepts relevant to fusion power plants. For an effective and reliable operation of such high temperature liquid metal systems, monitoring and control of critical process parameters is essential. However, limited operational experience coupled with high temperature operating conditions and corrosive nature of Pb-16Li severely limited application of commercially available diagnostic tools. This paper illustrates indigenous calibration test facility designs and experimental methods used to develop non-contact configuration level diagnostics using pulse radar level sensor, wetted configuration pressure diagnostics using diaphragm seal type pressure sensor and bulk temperature diagnostics with temperature profiling for high temperature, high pressure liquid Pb and Pb-16Li applications. Calibration check of these sensors was performed using analytical methods, at temperature between 380°C - 400°C and pressure upto 1 MPa (g). Reliability and performance validation were achieved through long duration testing of sensors in liquid Pb and liquid Pb-16Li environment for over 1000 hour. Estimated deviation for radar level sensor lies within [−3.36 mm, +13.64 mm] and the estimated error for pressure sensor lies within 1.1% of calibrated span over the entire test duration. Results obtained and critical observations from these tests are presented in this paper.
基金Supported by the National Natural Science Foundation of China(10975073)Qinglan Project of JiangsuFoundation of Jiangsu Educational Committee(09KJB470003)
文摘Consequent on MHD geometry sensibility phenomena was measured in an accident case;the more detail experiments have been conducted at the liquid metal experimental loop upgrade facility (LMEL-U). The experimental results indicate that MHD pressure drop can be greatly reduced in the special designed ducts. Base on the experimental data, an innovation channel concept (tentatively called as the secondary flow channel, short in “S-channel”) is addressed as a reducing MHD pressure drop channel for the application of a liquid metal blanket system in fusion reactor. It may be a dawn for solving MHD pressure drop key issue of liquid metal blanket system.
基金supported by the National R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology & Ministry of knowledge Economy (Grant No. 2015M1A7A1A02050613)
文摘This study performs a numerical analysis of three-dimensional liquid metal(LM) magnetohydrodynamic(MHD) flows in a square duct with an FCI in a non-uniform magnetic field. The current study predicts detailed information on flow velocity, Lorentz force, pressure, current and electric potential of MHD duct flows for different Hartmann numbers. Also, the effect of the electric conductivity of FCI on the pressure drop along the main flow direction in a non-uniform magnetic field is examined. The present study investigates the features of LM MHD flows in consideration of the interdependency among the flow variables.