In this study, a two-step heating process is introduced for transient liquid phase ( TLP) diffusion bonding fo r sound joints with T91 heat resistant steels. At first, a short-time higher temperature heatin...In this study, a two-step heating process is introduced for transient liquid phase ( TLP) diffusion bonding fo r sound joints with T91 heat resistant steels. At first, a short-time higher temperature heating step is addressed to melt the interlayer, followed by the second step to complete isothermal solidification at a low temperature. The most critical feature of our new method is producing a non-planar interface at the T9/ heat resistant steels joint. We propose a transitional liquid phase bonding of T91 heat resistant steels by this approach. Since joint microstructures have been studied, we tested the tensile strength to assess joint mechanical property. The result indicates that the solidified bond may contain a primary solid-solution, similar composition to the parent metal and free from precipitates. Joint tensile strength of the joint is not lower than parent materials. Joint bend's strengths are enhanced due to the higher metal-to-metal junction producing a non-planar bond lines. Nevertheless, the traditional transient liquid phase diffusion bonding produces planar ones. Bonding parameters of new process are 1 260 °C for 0. 5 min and 1 230 °C fo r 4 min.展开更多
A new technology, the two-step transient liquid phase diffusion bonding (TLP-DB) technology for cobalt-based K640 superalloy, was investigated. The method consists of a short-time high temperature heating to melt in...A new technology, the two-step transient liquid phase diffusion bonding (TLP-DB) technology for cobalt-based K640 superalloy, was investigated. The method consists of a short-time high temperature heating to melt interlayer followed by isothermal solidification of liquid phase at a lower temperature than that of the conventional TLP-DB. The result indicates that the two-step TLP-DB can reliably produce an ideal joint with uniform chemical composition, which is superior to the joint welded by conventional TLP-DB in microstructure and mechanical properties. Bonding parameters of new process are 1 250℃ for 0. 5 h and 1 180℃ for 3 h. The high-temperature tensile strength of the joint by two-step TLP-DB reaches 74% of that of the base material on an equal basis, but the high-temperature tensile strength of the joint by conventional TLP-DB is only 58% of that of the base material.展开更多
Non-interlayer liquid phase diffusion welding (China Patent) and laser welding methods for aluminum matrix composite are mainly described in this paper. In the non-interlayer liquid phase diffusion welding, the key pr...Non-interlayer liquid phase diffusion welding (China Patent) and laser welding methods for aluminum matrix composite are mainly described in this paper. In the non-interlayer liquid phase diffusion welding, the key processing parameters affecting the strength of joint is welding temperature. When temperature rises beyond solidus temperature, the bonded line vanishes. The strength of joint reaches the maximum and becomes constant when welding temperature is close to liquid phase temperature. Oxide film in the interface is no longer detected by SEM in the welded joint. With this kind of technique, particle reinforced aluminum matrix composite Al2 O3p/6061Al is welded successfully, and the joint strength is about 80% of the strength of composite (as-casted). In the laser welding, results indicate that because of the huge specific surface area of the reinforcement, the interfacial reaction between the matrix and the reinforcement is restrained intensively at certain laser power and pulsed laser beam. The laser pulse frequency directly affects the reinforcement segregation and the reinforcement distribution in the weld, so that the weldability of the composite could be improved by increasing the laser pulse frequency. The maximum strength of the weld can reach 70% of the strength of the parent.展开更多
基金supported by the Natural Science Foundation of Henan Province(Grant No.152107000047)
文摘In this study, a two-step heating process is introduced for transient liquid phase ( TLP) diffusion bonding fo r sound joints with T91 heat resistant steels. At first, a short-time higher temperature heating step is addressed to melt the interlayer, followed by the second step to complete isothermal solidification at a low temperature. The most critical feature of our new method is producing a non-planar interface at the T9/ heat resistant steels joint. We propose a transitional liquid phase bonding of T91 heat resistant steels by this approach. Since joint microstructures have been studied, we tested the tensile strength to assess joint mechanical property. The result indicates that the solidified bond may contain a primary solid-solution, similar composition to the parent metal and free from precipitates. Joint tensile strength of the joint is not lower than parent materials. Joint bend's strengths are enhanced due to the higher metal-to-metal junction producing a non-planar bond lines. Nevertheless, the traditional transient liquid phase diffusion bonding produces planar ones. Bonding parameters of new process are 1 260 °C for 0. 5 min and 1 230 °C fo r 4 min.
文摘A new technology, the two-step transient liquid phase diffusion bonding (TLP-DB) technology for cobalt-based K640 superalloy, was investigated. The method consists of a short-time high temperature heating to melt interlayer followed by isothermal solidification of liquid phase at a lower temperature than that of the conventional TLP-DB. The result indicates that the two-step TLP-DB can reliably produce an ideal joint with uniform chemical composition, which is superior to the joint welded by conventional TLP-DB in microstructure and mechanical properties. Bonding parameters of new process are 1 250℃ for 0. 5 h and 1 180℃ for 3 h. The high-temperature tensile strength of the joint by two-step TLP-DB reaches 74% of that of the base material on an equal basis, but the high-temperature tensile strength of the joint by conventional TLP-DB is only 58% of that of the base material.
基金supported by the National Natural Science Foundation of China(No.50171025)open project of foundation of National Key Laboratory of Metal Matrix Composite,Shanghai Jiaotong University
文摘Non-interlayer liquid phase diffusion welding (China Patent) and laser welding methods for aluminum matrix composite are mainly described in this paper. In the non-interlayer liquid phase diffusion welding, the key processing parameters affecting the strength of joint is welding temperature. When temperature rises beyond solidus temperature, the bonded line vanishes. The strength of joint reaches the maximum and becomes constant when welding temperature is close to liquid phase temperature. Oxide film in the interface is no longer detected by SEM in the welded joint. With this kind of technique, particle reinforced aluminum matrix composite Al2 O3p/6061Al is welded successfully, and the joint strength is about 80% of the strength of composite (as-casted). In the laser welding, results indicate that because of the huge specific surface area of the reinforcement, the interfacial reaction between the matrix and the reinforcement is restrained intensively at certain laser power and pulsed laser beam. The laser pulse frequency directly affects the reinforcement segregation and the reinforcement distribution in the weld, so that the weldability of the composite could be improved by increasing the laser pulse frequency. The maximum strength of the weld can reach 70% of the strength of the parent.