期刊文献+
共找到314篇文章
< 1 2 16 >
每页显示 20 50 100
Experiments on two-phase flow in hydraulic jump on pebbled rough bed:Part 1–Turbulence properties and particle chord time and length
1
作者 Farhad Bahmanpouri Carlo Gualtieri Hubert Chanson 《Water Science and Engineering》 EI CAS CSCD 2023年第4期359-368,共10页
This study reported and discussed turbulence characteristics,such as turbulence intensity,correlation time scales,and advective length scales.The characteristic air–water time scale,including the particle chord time ... This study reported and discussed turbulence characteristics,such as turbulence intensity,correlation time scales,and advective length scales.The characteristic air–water time scale,including the particle chord time and length and their probability density functions(PDFs),was investigated.The results demonstrated that turbulence intensity was relatively greater on a rough bed in the roller length,whereas further downstream,the decay rate was higher.In addition,the relationship between turbulence intensity and dimensionless bubble count rate reflected an increase in turbulence intensity associated with the number of entrained particles.Triple decomposition analysis(TDA)was performed to determine the contributions of slow and fast turbulent components.The TDA results indicated that,regardless of bed type and inflow conditions,the sum of the band-pass(T'_(u))and high-pass(T″_(u))filtered turbulence intensities was equal to the turbulence intensity of the raw signal data(T_(u)).T″_(u) highlighted a higher turbulence intensity and larger vorticities on the rough bed for an identical inflow Froude number.Additional TDA results were presented in terms of the interfacial velocity,auto-and cross-correlation time scales,and longitudinal advection length scale,with the effects of low-and high-frequency signal components on each highlighted parameter.The analysis of the air chord time indicated an increase in the proportion of small bubbles moving downstream.The second part of this research focused on the basic properties of particle grouping and clustering. 展开更多
关键词 Hydraulic jump Pebbled rough bed Turbulence intensity particle chord time two-phase flow
下载PDF
Numerical simulation of predicting and reducing solid particle erosion of solid-liquid two-phase flow in a choke 被引量:3
2
作者 Li Guomei Wang Yueshe +3 位作者 He Renyang Cao Xuewen Lin Changzhi Meng Tao 《Petroleum Science》 SCIE CAS CSCD 2009年第1期91-97,共7页
Chokes are one of the most important components of downhole flow-control equipment. The particle erosion mathematical model, which considers particle-particle interaction, was established and used to simulate solid pa... Chokes are one of the most important components of downhole flow-control equipment. The particle erosion mathematical model, which considers particle-particle interaction, was established and used to simulate solid particle movement as well as particle erosion characteristics of the solid-liquid two-phase flow in a choke. The corresponding erosion reduction approach by setting ribs on the inner wall of the choke was advanced. This mathematical model includes three parts: the flow field simulation of the continuous carrier fluid by an Eulerian approach, the particle interaction simulation using the discrete particle hard sphere model by a Lagrangian approach and calculation of erosion rate using semiempirical correlations. The results show that particles accumulated in a narrow region from inlet to outlet of the choke and the dominating factor affecting particle motion is the fluid drag force. As a result, the optimization of rib geometrical parameters indicates that good anti-erosion performance can be achieved by four ribs, each of them with a height (H) of 3 mm and a width (B) of 5 mm equaling the interval between ribs (L). 展开更多
关键词 Solid-liquid two-phase flow discrete particle hard sphere model CHOKE erosion rate antierosion numerical simulation
下载PDF
Mechanism from particle compaction to fluidization of liquid–solid two-phase flow
3
作者 Yue Zhang Jinchun Song +2 位作者 Lianxi Ma Liancun Zheng Minghe Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第1期373-377,共5页
A new model of particle yield stress including cohesive strength is proposed,which considers the friction and cohesive strength between particles.A calculation method for the fluidization process of liquid–solid two-... A new model of particle yield stress including cohesive strength is proposed,which considers the friction and cohesive strength between particles.A calculation method for the fluidization process of liquid–solid two-phase flow in compact packing state is given,and the simulation and experimental studies of fluidization process are carried out by taking the sand–water two-phase flow in the jet dredging system as an example,and the calculation method is verified. 展开更多
关键词 liquid–solid flow two-phase flow cohesive strength yield stress
下载PDF
Two-Phase Flow of Blood with Magnetic Dusty Particles in Cylindrical Region: A Caputo Fabrizio Fractional Model
4
作者 Anees Imitaz Aamina Aamina +2 位作者 Farhad Ali Ilyas Khan Kottakkaran Sooppy Nisar 《Computers, Materials & Continua》 SCIE EI 2021年第3期2253-2264,共12页
The present study is focused on the unsteady two-phase flow of blood in a cylindrical region.Blood is taken as a counter-example of Brinkman type fluid containing magnetic(dust)particles.The oscillating pressure gradi... The present study is focused on the unsteady two-phase flow of blood in a cylindrical region.Blood is taken as a counter-example of Brinkman type fluid containing magnetic(dust)particles.The oscillating pressure gradient has been considered because for blood flow it is necessary to investigate in the form of a diastolic and systolic pressure.The transverse magnetic field has been applied externally to the cylindrical tube to study its impact on both fluids as well as particles.The system of derived governing equations based on Navier Stoke’s,Maxwell and heat equations has been generalized using the well-known Caputo–Fabrizio(C–F)fractional derivative.The considered fractional model has been solved analytically using the joint Laplace and Hankel(L&H)transformations.The effect of various physical parameters such as fractional parameter,Gr,M andγ on blood and magnetic particles has been shown graphically using the Mathcad software.The fluid behaviour is thinner in fractional order as compared to the classical one. 展开更多
关键词 two-phase blood flow dusty fluid Brinkman type model magnetic dusty particles heat transfer C-F derivative
下载PDF
Boundary Estimation in Annular Two-Phase Flow Using Electrical Impedance Tomography with Particle Swarm Optimization
5
作者 Rongli Wang 《Modern Electronic Technology》 2019年第1期15-19,共5页
In this study we consider the boundary estimation of annular two-phase flow in a pipe with the potential distribution on the electrodes mounted on the outer boundary of the pipe, by taking use of electrical impedance ... In this study we consider the boundary estimation of annular two-phase flow in a pipe with the potential distribution on the electrodes mounted on the outer boundary of the pipe, by taking use of electrical impedance tomography (EIT) technique with the numerical solution obtained from an improved boundary distributed source (IBDS) method. The particle swarm optimization (PSO) is used to iteratively seek the boundary configuration. The simulation results showed that PSO and EIT technique with numerical solution obtained from IBDS has been successfully applied to the monitoring of an annular two-phase flow. 展开更多
关键词 Electrical impedance tomography MESHLESS METHOD Improved BOUNDARY distributed source METHOD particle SWARM optimization ANNULAR two-phase flow
下载PDF
Liquid holdup measurement with double helix capacitance sensor in horizontal oil-water two-phase flow pipes 被引量:5
6
作者 翟路生 金宁德 +1 位作者 高忠科 王振亚 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第1期268-275,共8页
This paper presents the characteristics of a double helix capacitance sensor for measurement of the liquid holdup in horizontal oil–water two-phase flow. The finite element method is used to calculate the sensitivity... This paper presents the characteristics of a double helix capacitance sensor for measurement of the liquid holdup in horizontal oil–water two-phase flow. The finite element method is used to calculate the sensitivity field of the sensor in a pipe with 20 mm inner diameter and the effect of sensor geometry on the distribution of sensitivity field is presented. Then, a horizontal oil–water two-phase flow experiment is carried out to measure the response of the double helix capacitance sensor, in which a novel method is proposed to calibrate the liquid holdup based on three pairs of parallel-wire capacitance probes. The performance of the sensor is analyzed in terms of the flow structures detected by mini-conductance array probes. 展开更多
关键词 Horizontal oil–water two-phase flow liquid holdup measurement Double helix capacitance sensor flow pattern
下载PDF
Parametric study of gas−liquid two-phase flow field in horizontal stirred tank 被引量:8
7
作者 Zhi-bin CHEN Hong-jie YAN +4 位作者 Ping ZHOU Ping YANG Jie-hui DING Jia LIU Liu LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第6期1806-1817,共12页
Based on Fluent software,the gas−liquid two-phase flow in the horizontal stirred tank was simulated with SST k−ωturbulence model,Eulerian−Eulerian two-fluid model,and multi-reference flame method.The mixing process i... Based on Fluent software,the gas−liquid two-phase flow in the horizontal stirred tank was simulated with SST k−ωturbulence model,Eulerian−Eulerian two-fluid model,and multi-reference flame method.The mixing process in the tank was calculated by tracer method.The results show that increasing the rotating speed or gas flow is conducive to a more uniform distribution of the gas phase and accelerates the mixing of the liquid phase.When the rotating speed exceeds 93 r/min,the relative power demand remains basically constant.The change in the inclination angle of the upper impeller has minimal effect on the gas phase distribution.When the inclination angle is 50°,the relative power demand reaches the maximum.An appropriate increase in the impeller distance from the bottom improves the gas holdup and gas phase distribution but increases the liquid phase mixing time. 展开更多
关键词 horizontal stirred tank gas−liquid two-phase flow Eulerian−Eulerian two-fluid model multiple reference frame method
下载PDF
Coupling of discrete-element method and smoothed particle hydrodynamics for liquid-solid flows 被引量:2
8
作者 Yrj Jun Huang Ole Jφrgen Nydal 《Theoretical & Applied Mechanics Letters》 CAS 2012年第1期55-58,共4页
Particle based methods can be used for both the simulations of solid and fluid phases in multiphase medium, such as the discrete-element method for solid phase and the smoothed particle hydrodynamics for fluid phase. ... Particle based methods can be used for both the simulations of solid and fluid phases in multiphase medium, such as the discrete-element method for solid phase and the smoothed particle hydrodynamics for fluid phase. This paper presents a computational method combining these two methods for solid-liquid medium. The two phases are coupled by using an improved model from a reported Lagrangian-Eulerian method. The technique is verified by simulating liquid-solid flows in a two-dimensional lid-driven cavity. 展开更多
关键词 discrete-element method smoothed particle hydrodynamics liquid-solid flows lid-driven cavity
下载PDF
K-ε-T MODEL OF DENSE LIQUID-SOLID TWO-PHASE TURBULENT FLOW AND ITS APPLICATION TO THE PIPE FLOW
9
作者 魏进家 胡春波 姜培正 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2000年第5期519-528,共10页
To predict the characteristics of dense liquid-solid two-phase flow, K-Ε-T model is established, in which the turbulent flow of fluid phase was described with fluid turbulent kinetic energy Kf and its dissipation ra... To predict the characteristics of dense liquid-solid two-phase flow, K-Ε-T model is established, in which the turbulent flow of fluid phase was described with fluid turbulent kinetic energy Kf and its dissipation rate Εf, and the particles random motion was described with particle turbulent energy Kp and its dissipation rate Εp and pseudothermal temperature Tp. The governing equations were also derived. With K-Ε-T model, numerical study of dense liquid-solid two-phase turbulent up-flow in a pipe is performed. The calculated results are in good agreement with experimental data of Alajbegovic et al. (1994), and some flow features are captured. 展开更多
关键词 liquids Numerical analysis particles (particulate matter) Pipe flow SOLIDS Turbulent flow
下载PDF
Experimental analysis on adjusting performance of vapor-liquid two-phase flow controller
10
作者 李慧君 屠珊 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第5期525-530,共6页
The vapor-liquid self-adjusting controller is an innovative automatic regulating valve.In order to ensure adjusted objects run safely and economically,the controller automatically adjusts the liquid flux to keep liqui... The vapor-liquid self-adjusting controller is an innovative automatic regulating valve.In order to ensure adjusted objects run safely and economically,the controller automatically adjusts the liquid flux to keep liquid level at a required level according to physical properties of vapor-liquid two-phase fluid.The adjusting mechanics,the controller’s performance and influencing factors of its stability have been analyzed in this paper.The theoretical analysis and successful applications have demonstrated this controller can keep the liquid level steady with good performance.The actual application in industry has shown that the controller can satisfactorily meet the requirement of industrial production and has wide application areas. 展开更多
关键词 vapor-liquid two-phase flow adjusting performance liquid level controller
下载PDF
SIMULATION OF GAS AND LIQUID TWO-PHASE FLOW THROUGH THE BLAST FURNACE DROPPING ZONE
11
作者 谢裕生 《Chinese Journal of Chemical Engineering》 SCIE EI CAS 1985年第1期63-76,共14页
A three-dimensional mathematical model,based on differential balances of mass and momentum,hasbeen developed to describe the two-phase flow of gas and liquid through the dropping zone of the blast fur-nace.Agreement b... A three-dimensional mathematical model,based on differential balances of mass and momentum,hasbeen developed to describe the two-phase flow of gas and liquid through the dropping zone of the blast fur-nace.Agreement between observed and calculated values verifies the validity of this model.On the basis of this model,various parameters for the surrounding of the dry zone of Blast FurnaceNo.I-BF of the Beijing Iron and Steel Company have been computed,from which a diagram for demar-cation of fluidization of coke and flooding of slag has been proposed. 展开更多
关键词 SIMULATION OF GAS AND liquid two-phase flow THROUGH THE BLAST FURNACE DROPPING ZONE
下载PDF
Effects of tube cross-sectional shapes on flow pattern, liquid film and heat transfer of n-pentane across tube bundles
12
作者 Xuejing He Zhenlin Li +1 位作者 Ji Wang Hai Yu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第8期16-25,共10页
The heat transfer of hydrocarbon refrigerant across tube bundles have been widely used in refrigeration.Three-dimensional simulation model using volume of fluid(VOF) was presented to study the effects of tube shapes o... The heat transfer of hydrocarbon refrigerant across tube bundles have been widely used in refrigeration.Three-dimensional simulation model using volume of fluid(VOF) was presented to study the effects of tube shapes on flow pattern, film thickness and heat transfer of n-pentane across tube bundles, including circle, ellipse-shaped, egg-shaped and cam-shaped tube bundles. Simulation results agree well with experimental data in the literature. The liquid film thickness of sheet flow and heat transfer for different tube shapes were obtained numerically. The flow pattern transition occurs lower vapor quality for ellipse-shaped tube than other tube shapes. For sheet flow, the liquid film on circle tube and ellipseshaped tube is symmetrically distributed along the circumferential direction. However, the liquid film on egg-shaped tube at circumferential angles(θ) = 15°–60° is thicker than θ = 135°–165°. The liquid film on cam tube at θ = 15°–60° is slightly thinner than θ = 135°–165°. The liquid film thickness varies from thinner to thicker for ellipse-shaped, cam-shaped, egg-shape and circle within θ = 15°–60°. The effect of tube shape is insignificant on thin liquid film thickness. Ellipse-shaped tube has largest heat transfer coefficient for sheet flow. In practical engineering, the tube shape could be designed as ellipse to promote heat transfer. 展开更多
关键词 Tube shapes flow pattern liquid film thickness Heat transfer two-phase flow
下载PDF
ON EQUATION OF DISCRETE SOLID PARTICLES' MOTION IN ARBITRARY FLOW FIELD AND ITS PROPERTIES 被引量:2
13
作者 黄社华 李炜 程良骏 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2000年第3期297-310,共14页
The forces on rigid particles moving in relation to fluid having been studied and the equation of modifications of their expressions under different flow conditions discussed, a general form of equation for discrete p... The forces on rigid particles moving in relation to fluid having been studied and the equation of modifications of their expressions under different flow conditions discussed, a general form of equation for discrete particles' motion in arbitrary flow field is obtained. The mathematical features of the linear form of the equation are clarified and analytical solution of the linearized equation is gotten by means of Laplace transform. According to above theoretical results, the effects of particles' properties on its motion in several typical flow field are studied, with some meaningful conclusions being reached. 展开更多
关键词 solid liquid two phase flow discrete particles' motion equation discrete solid particles Laplace transform
下载PDF
Mathematical Modelling of Particle Movement Ahead of the Solid-liquid Interface in Continuous Casting 被引量:4
14
作者 HongLEI YongliJIN +1 位作者 MiaoyongZHU JichengHE 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第5期403-406,共4页
Whether the particle will be trapped by the solid-liquid interface or not is dependent on its moving behavior ahead of the interface, so a mathematical model has been developed to investigate the movement of the parti... Whether the particle will be trapped by the solid-liquid interface or not is dependent on its moving behavior ahead of the interface, so a mathematical model has been developed to investigate the movement of the particle ahead of the solid-liquid interface. Based on the theory for the boundary layer, the fluid velocity field near the solid-liquid interface was obtained, and the trajectories of particles were calculated by the equations of motion for particles. In this model, the drag force, the added mass force, the buoyance force, the gravitational force, the Saffman force and the Basset history force are considered. The results show that the behavior of the particle ahead of the solid-liquid interface is affected by the physical property of the particle and fluid flow. And in the continuous casting process, if it moves in the stream directed upward or downward near vertical solid-liquid interface or in the horizontal flow under the solid-liquid interface, the particle with the diameter from 5 um to 60um can reach the solid-liquid interface. But if it moves in horizontal flow above the solid-liquid interface, only the particle with the diameter from 5 um to 10 um can reach the solid-liquid interface. 展开更多
关键词 Continuous casting. particle Fluid flow Solid-liquid interface Mathematical model
下载PDF
RESEARCH ON THE EFFECT OF CYLINDER PARTICLES ON THE TURBULENT PROPERTIES IN PARTICULATE FLOWS
15
作者 林建忠 林江 石兴 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第5期542-548,共7页
The fluid fluctuating velocity equations which include the term of cylinder particles were established. The turbulent intensity and Reynolds stress of fluid were obtained by averaging fluctuating velocity based on the... The fluid fluctuating velocity equations which include the term of cylinder particles were established. The turbulent intensity and Reynolds stress of fluid were obtained by averaging fluctuating velocity based on the solution of the fluctuating velocity equations. Above approach was used to solve the channel turbulent flows, and computational results were compared with the experimental ones for the case of single phase flow. The effects of volume fraction of particles, the ratio of particle length to diameter and the particle relaxation time on turbulent properties were illustrated by changing cylinder particle parameters. It is shown that particles play a restraining role to turbulent properties in the flows. The degree of restraint is directly proportional to the volume fraction of particle, the ratio of particle length to diameter and inversely proportional to particle relaxation time. 展开更多
关键词 two-phase flow cylinder particle channel flow turbulent property
下载PDF
Introduction to investigations of the negative corona and EHD flow in gaseous two-phase fluids
16
作者 Jerzy MIZERACZYK Artur BERENDT 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第5期147-156,共10页
Research interests have recently been directed towards electrical discharges in multi-phase environments.Natural electrical discharges,such as lightning and coronas,occur in the Earth's atmosphere,which is actually a... Research interests have recently been directed towards electrical discharges in multi-phase environments.Natural electrical discharges,such as lightning and coronas,occur in the Earth's atmosphere,which is actually a mixture of gaseous phase(air) and suspended solid and liquid particulate matters(PMs).An example of an anthropogenic gaseous multi-phase environment is the flow of flue gas through electrostatic precipitators(ESPs),which are generally regarded as a mixture of a post-combustion gas with solid PM and microdroplets suspended in it.Electrical discharges in multi-phase environments,the knowledge of which is scarce,are becoming an attractive research subject,offering a wide variety of possible discharges and multi-phase environments to be studied.This paper is an introduction to electrical discharges in multi-phase environments.It is focused on DC negative coronas and accompanying electrohydrodynamic(EHD) flows in a gaseous two-phase fluid formed by air(a gaseous phase) and solid PM(a solid phase),run under laboratory conditions.The introduction is based on a review of the relevant literature.Two cases will be considered:the first case is of a gaseous two-phase fluid,initially motionless in a closed chamber before being subjected to a negative corona(with the needle-toplate electrode arrangement),which afterwards induces an EHD flow in the chamber,and the second,of a gaseous two-phase fluid flowing transversely with respect to the needle-to-plate electrode axis along a chamber with a corona discharge running between the electrodes.This review-based introductory paper should be of interest to theoretical researchers and modellers in the field of negative corona discharges in single-or two-phase fluids,and for engineers who work on designing EHD devices(such as ESPs,EHD pumps,and smoke detectors). 展开更多
关键词 DC negative corona discharge Trichel pulses gaseous two-phase flow air withsuspended particle flow ESP EHD
下载PDF
Effects of Particle Concentration on the Dynamics of a Single-Channel Sewage Pump under Low-Flow-Rate Conditions
17
作者 Peijian Zhou Chaoshou Yan +2 位作者 Lingfeng Shu Hao Wang Jiegang Mou 《Fluid Dynamics & Materials Processing》 EI 2021年第5期871-886,共16页
Single-channel sewage pumps are generally used to transport solid-liquid two-phase media consisting of a fluid and solid particles due to the good non-clogging property of such devices.However,the non-axisymmetric str... Single-channel sewage pumps are generally used to transport solid-liquid two-phase media consisting of a fluid and solid particles due to the good non-clogging property of such devices.However,the non-axisymmetric structure of the impeller of this type of pumps generally induces flow asymmetry,oscillatory outflow during operations,and hydraulic imbalance.In severe cases,these effects can jeopardize the safety and stability of the overall pump.In the present study,such a problem is investigated in the framework of a Mixture multiphase flow method coupled with a RNG turbulence model used to determine the structure of the flow field and the related motion of transported particles.It is shown that under different inlet particle concentrations,the flow field in the pump exhibits periodic variations of the pressure.The volume fraction of solid particles at the trailing edge of the suction surface of the blade is the largest,and solid particles tend to be concentrated at the outer edge of the pump body.With a rise in import particle content,the pressure and volume fraction of particles in the sewage pump also increase;for a fixed inlet particle concentration,the pressure pulsation amplitude increases with an increase in the flow rate.In addition,under small flow conditions,as the inlet particle concentration increases,the flow field leaving the sewage pump diaphragm near the outlet of the volute becomes more turbulent,and even a secondary back-flow vortex appears. 展开更多
关键词 Single-channel sewage pump numerical simulation solid-liquid two-phase flow particle distribution secondary flow
下载PDF
Solid Particles Injection in Gas Turbulent Channel Flow
18
作者 Abd Elnaby Kabeel Medhat Elkelawy +1 位作者 Hagar Alm-Eldin Bastawissi Ahmed Mohammed Elbanna 《Energy and Power Engineering》 2016年第12期367-388,共22页
This paper represents a review of the recent researches that investigate the behavior of the gas turbulent flow laden with solid particles. The significant parameters that influence the interactions between the both p... This paper represents a review of the recent researches that investigate the behavior of the gas turbulent flow laden with solid particles. The significant parameters that influence the interactions between the both phases, such as particle size, loading ratio and the gas velocity, have been extensively reviewed. Those parameters are presented in dimensionless numbers in which the applicability of studying its effect in terms of all circumstances of the gas turbulent channel flow at different condition is possible. The represented results show that the turbulence degree is proportional to the particle size. It was found that at the most flow conditions even at low mass ratio, the particle shape, density and size significantly alter the turbulence characteristics. However, the results demonstrate that the particle Reynolds number is a vital sign: the turbulence field becomes weaker if particle Reynolds number is lower than the critical limit and vies verse. The gas velocity has a strong effect on the particles settling along the channel flow and as a result, the pressure drop will be affected. 展开更多
关键词 two-phase flow particle-Laden flow Gas-Solid Channel flow particle Size Effect
下载PDF
Experimental Investigation of Vibration Response of A Free-Hanging Flexible Riser Induced by Internal Gas-Liquid Slug Flow 被引量:10
19
作者 ZHU Hong-jun ZHAO Hong-lei GAO Yue 《China Ocean Engineering》 SCIE EI CSCD 2018年第6期633-645,共13页
The vibration response of a free-hanging flexible riser induced by internal gas-liquid slug flow was studied experimentally in a small-diameter tube model based on Froude number criterion. The flow regime in a curved ... The vibration response of a free-hanging flexible riser induced by internal gas-liquid slug flow was studied experimentally in a small-diameter tube model based on Froude number criterion. The flow regime in a curved riser model and the response displacements of the riser were simultaneously recorded by high speed cameras. The gas superficial velocity ranges from 0.1 m/s to 0.6 m/s while the liquid superficial velocity from 0.06 m/s to 0.3 m/s.Severe slugging type 3, unstable oscillation flow and relatively stable slug flow were observed in the considered flow rates. Severe slugging type 3 characterized by premature gas penetration occurs at relatively low flow rates. Both the cycle time and slug length become shorter as the gas flow rate increases. The pressure at the riser base undergoes a longer period and larger amplitude of fluctuation as compared with the other two flow regimes. Additionally, severe slugging leads to the most vigorous in-plane vibration. However, the responses in the vertical and horizontal directions are not synchronized. The vertical vibration is dominated by the second mode while the horizontal vibration is dominated by the first mode. Similar to the vortex-induced vibration, three branches are identified as initial branch, build-up branch and descending branch for the response versus the mixture velocity of gas-liquid flow. 展开更多
关键词 gas-liquid two-phase flow severe slugging liquid slug flexible riser flow-induced vibration
下载PDF
Development of Liquid Slug Length in Gas-Liquid Slug Flow along Horizontal Pipeline: Experiment and Simulation 被引量:8
20
作者 王鑫 郭烈锦 张西民 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第5期626-633,共8页
The liquid slug length distribution is crucial for designing the downstream processing system with mul-tiphase pipeline. Experiments were conducted in a 133m long horizontal test loop. The measurements were per-formed... The liquid slug length distribution is crucial for designing the downstream processing system with mul-tiphase pipeline. Experiments were conducted in a 133m long horizontal test loop. The measurements were per-formed by conductivity probes to determine the liquid slug length distribution. The data covered both the slug and plug flow regimes. From experimental results, the mean liquid slug lengths were relatively insensitive to gas and liquid flow rates in the higher mixture velocity range. But in the lower mixture velocity range, the mean liquid slug length decreased and then increased with mixture velocity. It shows that the development length of slug flow was longer than x/D=1157. A slug tracking model was adapted to study the evolution of liquid slug length distribution in a horizontal pipeline. In the present model, the wake effect of elongated bubble and the pressure drop due to accel-eration are taken into account and random slug lengths are introduced at the entrance. The results of the model are compared with the measured slug length distributions of slug flow regime. It shows that the predicted mean and maximum slug lengths are in agreement with the experimental data at x/D=1157 and the form of the slug length distributions is also predicted well by the model. 展开更多
关键词 two-phase flow slug flow liquid slug length slug tracking
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部