期刊文献+
共找到25,733篇文章
< 1 2 250 >
每页显示 20 50 100
Solid-liquid-core optical fiber biosensor for highly sensitive and selective detection of 4-chlorophenol in water 被引量:1
1
作者 Cangxu Feng Jianwei Zhang +6 位作者 Chao Bian Linyang Li Rong Hu Haixing Chang Fei Peng Xiaofeng Peng Nianbing Zhong 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第12期287-290,共4页
A novel solid-liquid-core fiber-optic biosensor was fabricated for highly sensitive and selective detection of 4-chlorophenol in water.The sensor comprised horseradish peroxidase(HRP)-coated U-shaped liquidcore optica... A novel solid-liquid-core fiber-optic biosensor was fabricated for highly sensitive and selective detection of 4-chlorophenol in water.The sensor comprised horseradish peroxidase(HRP)-coated U-shaped liquidcore optical fiber(LCOF)and 4-chlorophenol permselective polymer membrane.The U-shaped LCOF was flled with ethanol suspension of SiO_(2)particles and the polymer membrane was composed of molecularly imprinted polymer,sulfonated polyethersulfone,and polysulfone.The morphology,composition,and surface luminous properties of the sensing region were examined.The effects of the diameter and content of SiO_(2)particles and temperature of 4-chlorophenol solutions on the sensitivity of the biosensors were investigated.Further,the sensitivity,selectivity,response time,and limit of detection(LOD)of the biosensors was investigated.In addition,the effects of fiber core materials on the light transmission in sensing region were investigated and a biosensor sensing model was established.The proposed sensor exhibited high selectivity for 4-chlorophenol with satisfactory sensitivity,LOD,and response time:-1.18(μg/L)^(-1),30μg/L,and 400 s,respectively.The results are expected to aid in the development of methods for enhancing sensitivity of fiber-optic sensors and surface luminous intensity of optical fibers. 展开更多
关键词 4-CHLOROPHENOL Solid-liquid-core optical fiber Horseradish peroxidase Permselective polymermembrane Sensitivity SELECTIVITY
原文传递
Coherent optical frequency transfer via 972-km fiber link
2
作者 邓雪 张翔 +8 位作者 臧琦 焦东东 王丹 刘杰 高静 许冠军 董瑞芳 刘涛 张首刚 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期277-282,共6页
We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase lockin... We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase locking loop in the conventional active phase control scheme,the passive phase noise cancellation is realized by feeding double-trip beat-note frequency to the driver of the acoustic optical modulator at the local site.This passive scheme exhibits fine robustness and reliability,making it suitable for long-distance and noisy fiber links.An optical regeneration station is used in the link for signal amplification and cascaded transmission.The phase noise cancellation and transfer instability of the 972-km link is investigated,and transfer instability of 1.1×10^(-19)at 10^(4)s is achieved.This work provides a promising method for realizing optical frequency distribution over thousands of kilometers by using fiber links. 展开更多
关键词 optical frequency transfer fiber link phase noise cancellation
下载PDF
Functional Optical Fiber Sensors Detecting Imperceptible Physical/Chemical Changes for Smart Batteries
3
作者 Yiding Li Li Wang +3 位作者 Youzhi Song Wenwei Wang Cheng Lin Xiangming He 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期268-308,共41页
The battery technology progress has been a contradictory process in which performance improvement and hidden risks coexist.Now the battery is still a“black box”,thus requiring a deep understanding of its internal st... The battery technology progress has been a contradictory process in which performance improvement and hidden risks coexist.Now the battery is still a“black box”,thus requiring a deep understanding of its internal state.The battery should“sense its internal physical/chemical conditions”,which puts strict requirements on embedded sensing parts.This paper summarizes the application of advanced optical fiber sensors in lithium-ion batteries and energy storage technologies that may be mass deployed,focuses on the insights of advanced optical fiber sensors into the processes of one-dimensional nano-micro-level battery material structural phase transition,electrolyte degradation,electrode-electrolyte interface dynamics to three-dimensional macro-safety evolution.The paper contributes to understanding how to use optical fiber sensors to achieve“real”and“embedded”monitoring.Through the inherent advantages of the advanced optical fiber sensor,it helps clarify the battery internal state and reaction mechanism,aiding in the establishment of more detailed models.These advancements can promote the development of smart batteries,with significant importance lying in essentially promoting the improvement of system consistency.Furthermore,with the help of smart batteries in the future,the importance of consistency can be weakened or even eliminated.The application of advanced optical fiber sensors helps comprehensively improve the battery quality,reliability,and life. 展开更多
关键词 Smart battery Advanced embedded optical fiber sensor Battery internal physical/chemical state Quality-reliability-life characteristic
下载PDF
Controllable Synthesis of Au NRs and Its Flexible SERS Optical Fiber Probe with High Sensitivity
4
作者 熊文豪 WANG Wenbo +1 位作者 LONG Yuting 李宏 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期7-16,共10页
The surface-enhanced Raman scattering(SERS) optical fiber probes were successfully prepared by self-assembling on polyelectrolyte multilayers. Gold nanorods(Au NRs) were used as SERS enhancement material to give excel... The surface-enhanced Raman scattering(SERS) optical fiber probes were successfully prepared by self-assembling on polyelectrolyte multilayers. Gold nanorods(Au NRs) were used as SERS enhancement material to give excellent biological affinity and stability to the SERS optical fiber probes. Au NRs were synthesized by seed growth method. The synergistic effect between AgNO_(3) and surfactant was investigated, and the highest yield was found when AgNO_(3) was 500 uL. Meanwhile, different SERS optical fiber probes were obtained by selecting silane coupling agent, polyelectrolyte multilayer and graphene oxide(GO) to treat quartz fiber. It was found that the SERS optical fiber probes obtained by the self-assembled on polyelectrolyte multilayers method performed better than those by other methods. In addition, Mapping was combined with finite element simulation to analyze the electromagnetic field distribution at the fiber end face.The electromagnetic field distribution of Au NRs was investigated, the difference of electromagnetic field intensity around the Au NRs with different arrangements was compared, the strongest signal was obtained when the Au NRs were head-to-head. Finally, sensitivity of the optimized SERS optical fiber probes could reach 10^(-9)mol/L, with excellent stability and repeatability. 展开更多
关键词 surface-enhanced Raman scattering(SERS) optical fiber probe gold nanorods(Au NRs) polyelectrolyte multilayers controllable synthesis
下载PDF
Optical scanning endoscope via a single multimode optical fiber
5
作者 Guangxing Wu Runze Zhu +2 位作者 Yanqing Lu Minghui Hong Fei Xu 《Opto-Electronic Science》 2024年第3期1-32,共32页
Optical endoscopy has become an essential diagnostic and therapeutic approach in modern biomedicine for directly observing organs and tissues deep inside the human body,enabling non-invasive,rapid diagnosis and treatm... Optical endoscopy has become an essential diagnostic and therapeutic approach in modern biomedicine for directly observing organs and tissues deep inside the human body,enabling non-invasive,rapid diagnosis and treatment.Optical fiber endoscopy is highly competitive among various endoscopic imaging techniques due to its high flexibility,compact structure,excellent resolution,and resistance to electromagnetic interference.Over the past decade,endoscopes based on a single multimode optical fiber(MMF)have attracted widespread research interest due to their potential to significantly reduce the footprint of optical fiber endoscopes and enhance imaging capabilities.In comparison with other imaging principles of MMF endoscopes,the scanning imaging method based on the wavefront shaping technique is highly developed and provides benefits including excellent imaging contrast,broad applicability to complex imaging scenarios,and good compatibility with various well-established scanning imaging modalities.In this review,various technical routes to achieve light focusing through MMF and procedures to conduct the scanning imaging of MMF endoscopes are introduced.The advancements in imaging performance enhancements,integrations of various imaging modalities with MMF scanning endoscopes,and applications are summarized.Challenges specific to this endoscopic imaging technology are analyzed,and potential remedies and avenues for future developments are discussed. 展开更多
关键词 multimode optical fiber ENDOSCOPE scanning imaging FOCUSING wavefront shaping
下载PDF
Broadband all-fiber optical phase modulator based on photo-thermal effect in a gas-filled hollow-core fiber 被引量:1
6
作者 Shoulin Jiang Feifan Chen +4 位作者 Yan Zhao Shoufei Gao Yingying Wang Hoi Lut Ho Wei Jin 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第5期10-16,共7页
We report broadband all-fiber optical phase modulation based on the photo-thermal effect in a gas-filled hollow-core fiber.The phase modulation dynamics are studied by multi-physics simulation.A phase modulator is fab... We report broadband all-fiber optical phase modulation based on the photo-thermal effect in a gas-filled hollow-core fiber.The phase modulation dynamics are studied by multi-physics simulation.A phase modulator is fabricated using a 5.6-cm-long anti-resonant hollow-core fiber with pure acetylene filling.It has a half-wave optical power of 289 mW at 100 kHz and an average insertion loss 0.6 dB over a broad wavelength range from 1450 to 1650 nm.The rise and fall time constants are 3.5 and 3.7μs,respectively,2–3 orders of magnitude better than the previously reported microfiber-based photo-thermal phase modulators.The gas-filled hollow-core waveguide configuration is promising for optical phase modulation from ultraviolet to mid-infrared which is challenging to achieve with solid optical fibers. 展开更多
关键词 optical modulators photo-thermal effects hollow-core fibers
下载PDF
Specialty optical fibers for advanced sensing applications 被引量:1
7
作者 Huanhuan Liu Dora Juan Juan Hu +10 位作者 Qizhen Sun Lei Wei Kaiwei Li Changrui Liao Bozhe Li Cong Zhao Xinyong Dong Yuhan Tang Yihong Xiao Gerd Keiser Perry Ping Shum 《Opto-Electronic Science》 2023年第2期1-26,共26页
Optical fiber technology has changed the world by enabling extraordinary growth in world-wide communications and sensing.The rapid development and wide deployment of optical fiber sensors are driven by their excellent... Optical fiber technology has changed the world by enabling extraordinary growth in world-wide communications and sensing.The rapid development and wide deployment of optical fiber sensors are driven by their excellent sensing performance with outstanding flexibility,functionality,and versatility.Notably,the research on specialty optical fibers is playing a critical role in enabling and proliferating the optical fiber sensing applications.This paper overviews recent developments in specialty optical fibers and their sensing applications.The specialty optical fibers are reviewed based on their innovations in special structures,special materials,and technologies to realize lab in/on a fiber.An overview of sensing applications in various fields is presented.The prospects and emerging research areas of specialty optical fibers are also discussed. 展开更多
关键词 specialty optical fibers photonic crystal fiber MULTIFUNCTIONAL multi-material fibers lab in/on fiber
下载PDF
Encrypted optical fiber tag based on encoded fiber Bragg grating array
8
作者 Zhihao Cai Bozhe Li +13 位作者 Zhiyong Bai Dejun Liu Kaiming Yang Bonan Liu Cong Zhao Mengqiang Zou Jie Zhou Shangben Jiang Jingyi Huang Li Liu Xuming Zhang Junle Qu Yiping Wang Changrui Liao 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期658-665,共8页
Optical fibers are typically used in telecommunications services for data transmission,where the use of fiber tags is essential to distinguish between the different transmission fibers or channels and thus ensure the ... Optical fibers are typically used in telecommunications services for data transmission,where the use of fiber tags is essential to distinguish between the different transmission fibers or channels and thus ensure the working functionality of the communication system.Traditional physical entity marking methods for fiber labeling are bulky,easily confused,and,most importantly,the label information can be accessed easily by all potential users.This work proposes an encrypted optical fiber tag based on an encoded fiber Bragg grating(FBG)array that is fabricated using a point-by-point femtosecond laser pulse chain inscription method.Gratings with different resonant wavelengths and reflectivities are realized by adjusting the grating period and the refractive index modulations.It is demonstrated that a binary data sequence carried by a fiber tag can be inscribed into the fiber core in the form of an FBG array,and the tag data can be encrypted through appropriate design of the spatial distributions of the FBGs with various reflection wavelengths and reflectivities.The proposed fiber tag technology can be used for applications in port identification,encrypted data storage,and transmission in fiber networks. 展开更多
关键词 fiber Bragg grating femtosecond laser micromachining encrypted information optical fiber tag
下载PDF
Tapered optical fiber DNA biosensor for detecting Leptospira DNA
9
作者 Jia-Yong Lam Mohd Hanif Yaacob Hui-Yee Chee 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2023年第3期119-128,共10页
Objective: To establish a DNA detection platform based on a tapered optical fiber to detect Leptospira DNA by targeting the leptospiral secY gene.Methods: The biosensor works on the principle of light propagating in t... Objective: To establish a DNA detection platform based on a tapered optical fiber to detect Leptospira DNA by targeting the leptospiral secY gene.Methods: The biosensor works on the principle of light propagating in the special geometry of the optical fiber tapered from a waist diameter of 125 to 12 μm. The fiber surface was functionalized through a cascade of chemical treatments and the immobilization of a DNA capture probe targeting the secY gene. The presence of the target DNA was determined from the wavelength shift in the optical transmission spectrum.Results: The biosensor demonstrated good sensitivity, detecting Leptospira DNA at 0.001 ng/μL, and was selective for Leptospira DNA without cross-reactivity with non-leptospiral microorganisms. The biosensor specifically detected DNA that was specifically amplified through the loop-mediated isothermal amplification approach.Conclusions: These findings warrant the potential of this platform to be developed as a novel alternative approach to diagnose leptospirosis. 展开更多
关键词 DNA biosensor Tapered optical fiber LEPTOSPIROSIS LEPTOSPIRA
下载PDF
A New Method for In-Situ Measurement of Internal Solitary Waves Based on the Stimulated Raman Scattering in Optical Fibers
10
作者 WANG Jing ZHANG Meng +4 位作者 MIAO Xiangying YANG Zhonghao LI Zhixin HUO Dianheng MIAO Hongli 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第3期658-664,共7页
In-situ measurement of internal solitary waves(ISWs)is complicated in the ocean due to their randomness.At present,the ISWs are mainly detected by the chain structure of conductivity-temperature-depth systems(CTDs)or ... In-situ measurement of internal solitary waves(ISWs)is complicated in the ocean due to their randomness.At present,the ISWs are mainly detected by the chain structure of conductivity-temperature-depth systems(CTDs)or temperature sensors.The high cost limits the spatial resolution,which ultimately affects the measuring accuracy of the ISW amplitude.In this paper,we developed an experimental measurement system for detecting ISWs based on the stimulated Raman scattering in distributed optical fibers.This system has the advantages of high precision,low cost,and easy operation.The experimental results show that the system is consistent with CTDs in the measurement of vertical ocean temperature variation.The spatial resolution of the system can reach 1.0 m and the measuring accuracy of temperature is 0.2℃.We successfully detected 3 ISWs by the system in the South China Sea and two optical remote sensing images collected on May 18,2021,the same day of two detected ISWs,verify the occurrence of the measured ISWs.We used the image pairs method to calculate the phase velocity of ISW and the result is 1.71 ms^(-1).By extracting the distances between wave packets,it can be found that the semi-diurnal tide generates the detected ISWs.The impact of the tidal current velocity on the ISW in amplitude is undeniable.Undoubtedly,the system has a great application prospect for detecting ISWs and other dynamic phenomena in the ocean. 展开更多
关键词 internal solitary wave optical fiber stimulated Raman scattering in-situ measurement
下载PDF
An Optical Fiber Sensor for Simultaneous Measurement of pO2 and pH
11
作者 Baorong Fu Xianwen Zhang +1 位作者 Huimin Cao Zhushanying Zhang 《Open Journal of Applied Sciences》 CAS 2023年第4期579-590,共12页
Whether in the monitoring of critically ill patients such as shock, respiratory failure, brain injury, or in major anesthesia surgeries, it is necessary to evaluate the patient’s pO<sub>2</sub> and pH. An... Whether in the monitoring of critically ill patients such as shock, respiratory failure, brain injury, or in major anesthesia surgeries, it is necessary to evaluate the patient’s pO<sub>2</sub> and pH. An optical fiber sensor presented is capable of monitoring the presence of oxygen partial pressure (pO<sub>2</sub>) and pH in the real-time. The sensor is based on fluorescence sensing of polymer immobilized in the oxygen/pH-sensitive membranes and covalently attached to the optical fiber probe. The design of this sensor uses LED as light source, which is an excitation light source, inducing specific wavelengths of fluorescence on the oxygen/pH-sensitive membrane. The intensity and lifetime of fluorescence are related to the pO<sub>2</sub> and pH. So the pO<sub>2</sub> and pH can be measured by the relationship between the pO<sub>2</sub>/pH values and the intensity and lifetime of fluorescence. The signal conditioning system based on DSP and STM32 was used to store and process data, and display test values. The response of the sensor for pO<sub>2</sub> and pH monitoring with nitrogen (N<sub>2</sub>) as a balancing gas in the laboratory was performed. Finally, the oxygen/pH sensing scheme presented in this work is intended for using in biological, medical and environmental applications. 展开更多
关键词 optical fiber Sensor OXYGEN PH FLUORESCENCE
下载PDF
Development of Glass Optical Fibers 1970-2020,Providing Us the Digitalized Communication World
12
作者 Tarja T.Volotinen CBertil A.rvidsson 《材料科学与工程(中英文A版)》 2023年第1期1-12,共12页
New types of communication cables were found to be needed already during the 1960-decade,because the copper cables had,and still would have,too high attenuation and especially limited bandwidth,due to extremely high d... New types of communication cables were found to be needed already during the 1960-decade,because the copper cables had,and still would have,too high attenuation and especially limited bandwidth,due to extremely high dispersion at communication signals above 2 Mbit/s.Already the first commercially available multimode optical fibers(1979),developed from pure silica glass with a Ge-doped core,had much lower attenuation at signal frequencies of the order of 2-9 Mbit/s and above it.However,fiber core,cladding and coating materials,cable structures and materials,as well as manufacturing-,measurements-and test methods have been needed to be developed much further to get the reliable fiber cable communication networks.The important development stages and solutions to the most significant childhood problems of the optical fibers and cables are described in this paper.Now over 500 million km of optical fibers are manufactured and installed worldwide for the communication networks.The understanding of how to make the fibers with the very good transmission,mechanical and reliability properties exists at the manufacturers of the fibers and cables. 展开更多
关键词 optical fibers attenuation problems dispersion problems mechanical strength problems reliability core and cladding materials transmission properties mechanical properties
下载PDF
A hardening load transfer function for rock bolts and its calibration using distributed fiber optic sensing 被引量:2
13
作者 Assaf Klar Ori Nissim Itai Elkayam 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第11期2816-2830,共15页
Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most o... Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most of which are based on the global rock bolt response evaluated in pull-out tests.This paper presents a laboratory experimental setup aiming to capture the rock formation effect,while using distributed fiber optic sensing to quantify the effect of the confinement and the reinforcement pull-out behavior on a more local level.It is shown that the behavior along the sample itself varies,with certain points exhibiting stress drops with crack formation.Some edge effects related to the kinematic freedom of the grout to dilate are also observed.Regardless,it was found that the mid-level response is quite similar to the average response along the sample.The ability to characterize the variation of the response along the sample is one of the many advantages high-resolution fiber optic sensing allows in such investigations.The paper also offers a plasticity-based hardening load transfer function,representing a"slice"of the anchor.The paper describes in detail the development of the model and the calibration/determination of its parameters.The suggested model captures well the coupled behavior in which the pull-out process leads to an increase in the confining stress due to dilative behavior. 展开更多
关键词 Rock bolts Distributed fiber optic sensing Pull-out tests Load transfer function Hardening model
下载PDF
Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure 被引量:1
14
作者 李玲玲 魏勇 +4 位作者 刘春兰 任卓 周爱 刘志海 张羽 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期201-208,共8页
To address the restriction of fiber-optic surface plasmon resonance(SPR) sensors in the field of multi-sample detection, a novel dual-channel fiber-optic SPR sensor based on the cascade of coaxial dual-waveguide D-typ... To address the restriction of fiber-optic surface plasmon resonance(SPR) sensors in the field of multi-sample detection, a novel dual-channel fiber-optic SPR sensor based on the cascade of coaxial dual-waveguide D-type structure and microsphere structure is proposed in this paper. The fiber sidepolishing technique converts the coaxial dual-waveguide fiber into a D-type one, and the evanescent wave in the ring core leaks, generating a D-type sensing region;the fiber optic fused ball push technology converts the coaxial dual waveguides into microspheres, and the stimulated cladding mode evanescent wave leaks, producing the microsphere sensing region. By injecting light into the coaxial dual-waveguide middle core alone, the sensor can realize single-stage sensing in the microsphere sensing area;it can also realize dual-channel sensing in the D-type sensing area and microsphere sensing area by injecting light into the ring core. The refractive index measurement ranges for the two channels are 1.333–1.365 and 1.375–1.405, respectively, with detection sensitivities of 981.56 nm/RIU and 4138 nm/RIU. The sensor combines wavelength division multiplexing and space division multiplexing technologies, presenting a novel research concept for multi-channel fiber SPR sensors. 展开更多
关键词 coaxial dual-waveguide optical fiber D structure optical fiber microsphere structure dual-channel fiber-optic surface plasmon resonance(SPR)sensor
下载PDF
3D printed fiber-optic nanomechanical bioprobe 被引量:1
15
作者 Mengqiang Zou Changrui Liao +17 位作者 Yanping Chen Lei Xu Shuo Tang Gaixia Xu Ke Ma Jiangtao Zhou Zhihao Cai Bozhe Li Cong Zhao Zhourui Xu Yuanyuan Shen Shen Liu Ying Wang Zongsong Gan Hao Wang Xuming Zhang Sandor Kasas Yiping Wang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期222-234,共13页
Ultrasensitive nanomechanical instruments,e.g.atomic force microscopy(AFM),can be used to perform delicate biomechanical measurements and reveal the complex mechanical environment of biological processes.However,these... Ultrasensitive nanomechanical instruments,e.g.atomic force microscopy(AFM),can be used to perform delicate biomechanical measurements and reveal the complex mechanical environment of biological processes.However,these instruments are limited because of their size and complex feedback system.In this study,we demonstrate a miniature fiber optical nanomechanical probe(FONP)that can be used to detect the mechanical properties of single cells and in vivo tissue measurements.A FONP that can operate in air and in liquids was developed by programming a microcantilever probe on the end face of a single-mode fiber using femtosecond laser two-photon polymerization nanolithography.To realize stiffness matching of the FONP and sample,a strategy of customizing the microcantilever’s spring constant according to the sample was proposed based on structure-correlated mechanics.As a proof-of concept,three FONPs with spring constants varying from 0.421 N m^(−1)to 52.6 N m^(−1)by more than two orders of magnitude were prepared.The highest microforce sensitivity was 54.5 nmμN^(−1)and the detection limit was 2.1 nN.The Young’s modulus of heterogeneous soft materials,such as polydimethylsiloxane,muscle tissue of living mice,onion cells,and MCF-7 cells,were successfully measured,which validating the broad applicability of this method.Our strategy provides a universal protocol for directly programming fiber-optic AFMs.Moreover,this method has no special requirements for the size and shape of living biological samples,which is infeasible when using commercial AFMs.FONP has made substantial progress in realizing basic biological discoveries,which may create new biomedical applications that cannot be realized by current AFMs. 展开更多
关键词 two-photon polymerization nanolithography optical fiber sensor nanomechanical probe stiffness tunable microcantilever BIOSENSOR
下载PDF
Effect of radiation-induced mean wavelength shift in optical fibers on the scale factor of an interferometric fiber optic gyroscope at a wavelength of 1300 nm 被引量:7
16
作者 金靖 王学勤 +1 位作者 林松 宋凝芳 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第9期366-372,共7页
In order to analyze the effect of wavelength-dependent radiation-induced attenuation (RIA) on the mean trans- mission wavelength in optical fiber and the scale factor of interferometric fiber optic gyroscopes (IFOG... In order to analyze the effect of wavelength-dependent radiation-induced attenuation (RIA) on the mean trans- mission wavelength in optical fiber and the scale factor of interferometric fiber optic gyroscopes (IFOGs), three types of polarization-maintaining (PM) fibers are tested by using a 60Co γ-radiation source. The observed different mean wave- length shift (MWS) behaviors for different fibers are interpreted by color-center theory involving dose rate-dependent absorption bands in ultraviolet and visible ranges and total dose-dependent near-infrared absorption bands. To evaluate the mean wavelength variation in a fiber coil and the induced scale factor change for space-borne IFOGs under low radiation doses in a space environment, the influence of dose rate on the mean wavelength is investigated by testing four germanium (Ge) doped fibers and two germanium-phosphorus (Ge-P) codoped fibers irradiated at different dose rates. Experimental results indicate that the Ge-doped fibers show the least mean wavelength shift during irradiation and their mean wavelength of optical signal transmission in fibers will shift to a shorter wavelength in a low-dose-rate radiation environment. Finally, the change in the scale factor of IFOG resulting from the mean wavelength shift is estimated and tested, and it is found that the significant radiation-induced scale factor variation must be considered during the design of space-borne IFOGs. 展开更多
关键词 space radiation fiber optic gyroscope scale factor mean wavelength
下载PDF
A long-term frequency-stabilized erbium-fiber-laser-based optical frequency comb with an intra-cavity electro-optic modulator 被引量:6
17
作者 张颜艳 闫露露 +6 位作者 赵文宇 孟森 樊松涛 张龙 郭文阁 张首刚 姜海峰 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第6期366-370,共5页
We demonstrate an optical frequency comb based on an erbium-doped-fiber femtosecond laser with the nonlinear polarization evolution scheme. The repetition rate of the laser is about 209 MHz. By controlling an intra-ca... We demonstrate an optical frequency comb based on an erbium-doped-fiber femtosecond laser with the nonlinear polarization evolution scheme. The repetition rate of the laser is about 209 MHz. By controlling an intra-cavity electro- optic modulator and a piezo-transducer, the repetition rate can be stabilized with a high-bandwidth servo in a frequency range of 3 kHz, enabling long-term repetition rate phase-locking. The in-loop frequency stability of repetition rate is about 1.6× 10-13 in an integration time of 1 s, limited by the measurement system; and it is inversely proportional to integration time in the short term. Furthermore, using a common path f-2f interferometer, the carrier envelope offset frequency of the comb is obtained with a signal-to-noise ratio of 40 dB in a 3-MHz resolution bandwidth. Stabilized cartier envelope offset frequency exhibits a deviation of 0.6 mHz in an integration time of 1 s. 展开更多
关键词 optical frequency comb fiber laser frequency stabilization frequency instability
下载PDF
All-fiber optical modulator based on no-core fiber and magnetic fluid as cladding 被引量:3
18
作者 陈耀飞 韩群 刘铁根 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第1期315-320,共6页
An all-fiber optical modulator, which is composed of a piece of no-core fiber spliced between two sections of singlemode fibers and uses magnetic fluid(MF) as the cladding of the no-core fiber section, is proposed a... An all-fiber optical modulator, which is composed of a piece of no-core fiber spliced between two sections of singlemode fibers and uses magnetic fluid(MF) as the cladding of the no-core fiber section, is proposed and investigated experimentally. Due to the tunable refractive index and absorption coefficient of MF, the output intensity can be modulated by controlling an applied magnetic field. The dependences of the modulator's temporal response on the working wavelength,the magnetic field strength(H), and the MF's concentration are investigated experimentally. The results are explained qualitatively by the dynamic response process of MF under the action of a magnetic field. The findings are helpful for optimizing this kind of modulator. 展开更多
关键词 optical fiber optical modulator no-core fiber magnetic fluid
下载PDF
Analysis of peripapillary retinal nerve fiber layer and inner macular layers by spectral-domain optical coherence tomography for detection of early glaucoma 被引量:6
19
作者 Pei-Wen Lin Hsueh-Wen Chang +1 位作者 Jih-Pin Lin Ing-Chou Lai 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2018年第7期1163-1172,共10页
AIM: To analyze the diagnostic capabilities of peripapillary retinal nerve fiber layer(p RNFL) thickness and segmented inner macular layer(IML) thickness measured by spectraldomain optical coherence tomography fo... AIM: To analyze the diagnostic capabilities of peripapillary retinal nerve fiber layer(p RNFL) thickness and segmented inner macular layer(IML) thickness measured by spectraldomain optical coherence tomography for detection of early glaucoma. METHODS: Fifty-three patients with primary open angle glaucoma(POAG), 60 patients with normal tension glaucoma(NTG) and 32 normal control subjects were enrolled. Thicknesses of p RNFL, total macular layers(TML), and the IML, including macular RNFL(m RNFL) and macular ganglion cell layer(m GCL) were assessed. The areas under the receiver operating characteristic curves(AROC) were calculated to compare the diagnostic power of different parameters. RESULTS: There were no differences in the parameters of p RNFL, TML, and IML between POAG and NTG groups. The thicknesses of superior and inferior m GCL showed significant correlation with mean deviation of visual field(R2=0.071, P=0.004; R2=0.08, P=0.002). The m GCL thickness significantly correlated with the p RNFL thickness in the superior and inferior quadrants(R2=0.156, P〈0.001; R2=0.407, P〈0.001). The thickness of the inferior-outer sector of macula had greater AROCs than those in the inferior-inner sector of macula. The AROCs for superior(0.894) and inferior(0.879) p RNFL thicknesses were similar with the AROCs for superior(0.839) and inferior m GCL(0.864) thicknesses. Sensitivities at 80% specificity for global p RNFL, inferior-outer m GCL and inferior-outer m RNFL thicknesses were 0.938, 0.867, and 0.725, respectively. CONCLUSION: The diagnostic capability of the m GCL thickness is comparable to that of the p RNFL thickness in patients with early glaucoma. The inferior-outer sector of IML has a better diagnostic capability than the inferiorinner sector of IML for detection of early glaucoma. 展开更多
关键词 retinal nerve fiber layer ganglion cell layer primary open angle glaucoma normal tension glaucoma optical coherence tomography
下载PDF
Design and Realization of Phased Array Radar Optical Fiber Transmission System 被引量:3
20
作者 胡善清 刘峰 龙腾 《Journal of Beijing Institute of Technology》 EI CAS 2007年第1期87-92,共6页
One optical fiber transmission system is designed. The modularization optical fiber transmission adapters were utilized in the system, so the system structure could be flexibly sealable. The sub-array adapter and sign... One optical fiber transmission system is designed. The modularization optical fiber transmission adapters were utilized in the system, so the system structure could be flexibly sealable. The sub-array adapter and signal processor adapter were designed and realized utilizing the new field programmable gate array (FP- GA) which could drive the optical transceiver. The transmission agreement was designed based on the data stream. In order to solve the signal synchronization problem of the optical fiber transmitted phased array radar, a method named synchronous clock was designed. The fiber transmission error code rate of the system was zero with an experimental transmission velocity of 800 Mbit/s. The phased array radar system has detected the airplane target, thus validated the feasibility of the design method. 展开更多
关键词 phased array radar optical fiber transmission ADAPTER SYNCHRONIZATION
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部