A 90°mixed-mode twisted nematic liquid-crystal-on-silicon(90°-MTN LCoS) with protrusion located between the adjacent pixels is proposed to reduce the effect of fringing field. The influence of the protrusion...A 90°mixed-mode twisted nematic liquid-crystal-on-silicon(90°-MTN LCoS) with protrusion located between the adjacent pixels is proposed to reduce the effect of fringing field. The influence of the protrusion with different widths from0.5 μm to 0.9 μm and different heights from 0.3 μm to 0.7 μm is investigated. The results demonstrate that the invalid pixel region width can be reduced by 31.5% via using the protrusion with the suitable width and height compared with no protrusion case, which provides a higher display quality, such as the higher reflectance and contrast ratio.展开更多
In lightweight augmented reality(AR)glasses,the light engines must be very compact while keeping a high optical efficiency to enable longtime comfortable wearing and high ambient contrast ratio.“Liquid-crystal-on-sil...In lightweight augmented reality(AR)glasses,the light engines must be very compact while keeping a high optical efficiency to enable longtime comfortable wearing and high ambient contrast ratio.“Liquid-crystal-on-silicon(LCoS)or micro-LED,who wins?”is recently a heated debate question.Conventional LCoS system is facing tremendous challenges due to its bulky illumination systems;it often incorporates a bulky polarizing beam splitter(PBS)cube.To minimize the formfactor of an LCoS system,here we demonstrate an ultracompact illumination system consisting of an in-coupling prism,and a light guide plate with multiple parallelepiped extraction prisms.The overall module volume including the illumination optics and an LCoS panel(4.4-μm pixel pitch and 1024x1024 resolution elements),but excluding the projection optics,is merely 0.25 cc(cm3).Yet,our system exhibits an excellent illuminance uniformity and an impressive optical efficiency(36%–41%for a polarized input light).Such an ultracompact and high-efficiency LCoS illumination system is expected to revolutionize the next-generation AR glasses.展开更多
基金supported by the National Key Research and Development Program of China (Grant No. 2018YFB0703701)the National Natural Science Foundation of China (Grant No. 61475042)。
文摘A 90°mixed-mode twisted nematic liquid-crystal-on-silicon(90°-MTN LCoS) with protrusion located between the adjacent pixels is proposed to reduce the effect of fringing field. The influence of the protrusion with different widths from0.5 μm to 0.9 μm and different heights from 0.3 μm to 0.7 μm is investigated. The results demonstrate that the invalid pixel region width can be reduced by 31.5% via using the protrusion with the suitable width and height compared with no protrusion case, which provides a higher display quality, such as the higher reflectance and contrast ratio.
文摘In lightweight augmented reality(AR)glasses,the light engines must be very compact while keeping a high optical efficiency to enable longtime comfortable wearing and high ambient contrast ratio.“Liquid-crystal-on-silicon(LCoS)or micro-LED,who wins?”is recently a heated debate question.Conventional LCoS system is facing tremendous challenges due to its bulky illumination systems;it often incorporates a bulky polarizing beam splitter(PBS)cube.To minimize the formfactor of an LCoS system,here we demonstrate an ultracompact illumination system consisting of an in-coupling prism,and a light guide plate with multiple parallelepiped extraction prisms.The overall module volume including the illumination optics and an LCoS panel(4.4-μm pixel pitch and 1024x1024 resolution elements),but excluding the projection optics,is merely 0.25 cc(cm3).Yet,our system exhibits an excellent illuminance uniformity and an impressive optical efficiency(36%–41%for a polarized input light).Such an ultracompact and high-efficiency LCoS illumination system is expected to revolutionize the next-generation AR glasses.