The greatest earthquake in the modern history of Japan and probably the fourth greatest in the last 100 years in the world occurred on March 11, 2011 off the Pacific coast of Tohoku.Large tsunami and ground motions ca...The greatest earthquake in the modern history of Japan and probably the fourth greatest in the last 100 years in the world occurred on March 11, 2011 off the Pacific coast of Tohoku.Large tsunami and ground motions caused severe damage in wide areas, particularly many towns along the Pacific coast. So far, gravity change caused by such a great earthquake has been reported for the 1964 Alaska and the 2010 Maule events. However, the spatial-temporal resolution of the gravity data for these cases is insufficient to depict a co-seismic gravity field variation in a spatial scale of a plate subduction zone. Here, we report an unequivocal co-seismic gravity change over the Japanese Island, obtained from a hybrid gravity observation(combined absolute and relative gravity measurements). The time interval of the observation before and after the earthquake is within 1 year at almost all the observed sites, including 13 absolute and 16 relative measurement sites, which deduced tectonic and environmental contributions to the gravity change. The observed gravity agrees well with the result calculated by a dislocation theory based on a self-gravitating and layered spherical earth model. In this computation, a co-seismic slip distribution is determined by an inversion of Global Positioning System(GPS) data. Of particular interest is that the observed gravity change in some area is negative where a remarkable subsidence is observed by GPS, which can not be explained by simple vertical movement of the crust. This indicated that the mass redistribution in the underground affects the gravity change. This result supports the result that Gravity Recovery and Climate Experiment(GRACE) satellites detected a crustal dilatation due to the 2004 Sumatra earthquake by the terrestrial observation with a higher spatial and temporal resolution.展开更多
The effects of gravity,capillary force,and viscous force on the migration characteristics of oil and gas interface in oxygen-reduced air-assisted gravity drainage(OAGD)were studied through a two-dimensional visualizat...The effects of gravity,capillary force,and viscous force on the migration characteristics of oil and gas interface in oxygen-reduced air-assisted gravity drainage(OAGD)were studied through a two-dimensional visualization model.The effects of bond number,capillary number and low-temperature oxidation on OAGD recovery were studied by long core displacement experiments.On this basis,the low-temperature oxidation number was introduced and its relationship with the OAGD recovery was established.The results show that the shape and changing law of oil and gas front are mainly influenced by gravity,capillary force and viscous force.When the bond number is constant(4.52×10-4),the shape of oil-gas front is controlled by capillary number.When the capillary number is less than 1.68×10-3,the oil and gas interface is stable.When the capillary number is greater than 2.69×10-2,the oil and gas interface shows viscous fingering.When the capillary number is between 1.68×10-3 and 2.69×10-2,the oil and gas interface becomes capillary fingering.The core flooding experiments results show that for OAGD stable flooding,before the gas breakthrough,higher recovery is obtained in higher gravity number and lower capillary number.In this stage,gravity is predominant in controlling OAGD recovery and the oil recovery could be improved by reducing injection velocity.After gas breakthrough,higher recovery was obtained in lower gravity and higher capillary numbers,which means that the viscous force had a significant influence on the recovery.Increasing gas injection velocity in this stage is an effective measure to improve oil recovery.The low-temperature oxidation number has a good correlation with the recovery and can be used to predict the OAGD recovery.展开更多
Based on the mechanisms of gravity displacement,miscibility,viscosity reduction,and imbibition in natural gas flooding,an integrated reservoir construction technology of oil displacement and underground gas storage(UG...Based on the mechanisms of gravity displacement,miscibility,viscosity reduction,and imbibition in natural gas flooding,an integrated reservoir construction technology of oil displacement and underground gas storage(UGS)is proposed.This paper systemically describes the technical connotation,site selection principle and optimization process of operation parameters of the gas storage,and advantages of this technology.By making full use of the gravity displacement,miscibility,viscosity reduction,and imbibition features of natural gas flooding,the natural gas can be injected into oil reservoir to enhance oil recovery and build strategic gas storage at the same time,realizing the win-win situation of oil production and natural gas peak shaving.Compared with the gas reservoir storage,the integrated construction technology of gas storage has two profit models:increasing crude oil production and gas storage transfer fee,so it has better economic benefit.At the same time,in this kind of gas storage,gas is injected at high pressure in the initial stage of its construction,gas is injected and produced in small volume in the initial operation stage,and then in large volume in the middle and late operation stage.In this way,the gas storage wouldn’t have drastic changes in stress periodically,overcoming the shortcomings of large stress variations of gas reservoir storage during injection-production cycle due to large gas injection and production volume.The keys of this technology are site selection and evaluation of oil reservoir,and optimization of gravity displacement,displacement pressure,and gas storage operation parameters,etc.The pilot test shows that the technology has achieved initial success,which is a new idea for the rapid development of UGS construction in China.展开更多
The Kaikoura earthquake on November 14,2016 is one of the largest and most complex earthquakes in New Zealand since 1947.Despite the fact that it has ruptured about 12 separate faults,triggered 2132 aftershocks within...The Kaikoura earthquake on November 14,2016 is one of the largest and most complex earthquakes in New Zealand since 1947.Despite the fact that it has ruptured about 12 separate faults,triggered 2132 aftershocks within one week of the mainshock and induced considerable stress changes,few studies have been conducted to comprensively investigate the characteristics.The current study examines the horizontal and vertical displacements as well as the stress and gravity changes,aftershock distributions and also find out whether these changes affect the surrounding regions along the complex fault systems.The study covers the entire area affected by the Kaikoura event,which includes the northern part of the South Island and the southern part of the North Island.The dislocation theory was employed to evaluate the coseismic slip model on the multiple faults.The displacement results revealed that the maximum horizontal displacement is about 6 m and the vertical about 2 m,which are reasonably consistent with earlier study findings.Besides,the stress and gravity changes are quite complicated and inhomogeneous as evidenced by our coseismic model,demonstrating the complexity of the Kaikoura earthquake as well.Almost all the aftershocks are distributed in places where the stress and gravity change are found to be significant.In order to investigate the stability of our stress change models,we applied different friction coefficients and receiver fault parameters.The results justify the friction coefficient(μ=0.4)and the receiver fault parameters(230°,70°,150°)are suitable to define good stress change estimates.According to the stress change results at 15 km depth,the northern parts of the mainshock region,Hundalee fault,Humps fault and Jordan thrust areas together with the Wellington area are closer to failure and situated in a seismic risk zone.The multidimensional analysis adopted in this paper is helpful for making decisions and applications of stress and gravity change models in assessing seismic hazards.展开更多
The sound of space-time at the large scale is observed in the form of gravitational waves, which are disturbances in space-time produced by wavelike distortions (or kinks) in the gravitational field of an accelerating...The sound of space-time at the large scale is observed in the form of gravitational waves, which are disturbances in space-time produced by wavelike distortions (or kinks) in the gravitational field of an accelerating parcel or distribution of energy. In this study, we investigate a hypothetical wave mode of quantum space-time, which suggests the existence of scalar Planck waves. According to this hypothesis, the sound of quantum space-time corresponds to kinks propagating in the gravitational displacement field of an oscillating energy density. In evaluating the emission of scalar Planck waves and their effect on the geometry of space-time, one finds that they not only transport a vanishingly small amount of energy but can also be used to simulate gravity.展开更多
基金supported by the Research Fund Program of Institute of Seismology, Chinese Earthquake Administration (IS201226045)the Open Research Fund Program of the State Key Laboratory of Geodesy and Earth's Dynamics (SKLGED2013-3-7-E)the National Natural Science Foundation of China (41404065)
文摘The greatest earthquake in the modern history of Japan and probably the fourth greatest in the last 100 years in the world occurred on March 11, 2011 off the Pacific coast of Tohoku.Large tsunami and ground motions caused severe damage in wide areas, particularly many towns along the Pacific coast. So far, gravity change caused by such a great earthquake has been reported for the 1964 Alaska and the 2010 Maule events. However, the spatial-temporal resolution of the gravity data for these cases is insufficient to depict a co-seismic gravity field variation in a spatial scale of a plate subduction zone. Here, we report an unequivocal co-seismic gravity change over the Japanese Island, obtained from a hybrid gravity observation(combined absolute and relative gravity measurements). The time interval of the observation before and after the earthquake is within 1 year at almost all the observed sites, including 13 absolute and 16 relative measurement sites, which deduced tectonic and environmental contributions to the gravity change. The observed gravity agrees well with the result calculated by a dislocation theory based on a self-gravitating and layered spherical earth model. In this computation, a co-seismic slip distribution is determined by an inversion of Global Positioning System(GPS) data. Of particular interest is that the observed gravity change in some area is negative where a remarkable subsidence is observed by GPS, which can not be explained by simple vertical movement of the crust. This indicated that the mass redistribution in the underground affects the gravity change. This result supports the result that Gravity Recovery and Climate Experiment(GRACE) satellites detected a crustal dilatation due to the 2004 Sumatra earthquake by the terrestrial observation with a higher spatial and temporal resolution.
基金Supported by the National Science and Technology Major Project(ZX20170054)
文摘The effects of gravity,capillary force,and viscous force on the migration characteristics of oil and gas interface in oxygen-reduced air-assisted gravity drainage(OAGD)were studied through a two-dimensional visualization model.The effects of bond number,capillary number and low-temperature oxidation on OAGD recovery were studied by long core displacement experiments.On this basis,the low-temperature oxidation number was introduced and its relationship with the OAGD recovery was established.The results show that the shape and changing law of oil and gas front are mainly influenced by gravity,capillary force and viscous force.When the bond number is constant(4.52×10-4),the shape of oil-gas front is controlled by capillary number.When the capillary number is less than 1.68×10-3,the oil and gas interface is stable.When the capillary number is greater than 2.69×10-2,the oil and gas interface shows viscous fingering.When the capillary number is between 1.68×10-3 and 2.69×10-2,the oil and gas interface becomes capillary fingering.The core flooding experiments results show that for OAGD stable flooding,before the gas breakthrough,higher recovery is obtained in higher gravity number and lower capillary number.In this stage,gravity is predominant in controlling OAGD recovery and the oil recovery could be improved by reducing injection velocity.After gas breakthrough,higher recovery was obtained in lower gravity and higher capillary numbers,which means that the viscous force had a significant influence on the recovery.Increasing gas injection velocity in this stage is an effective measure to improve oil recovery.The low-temperature oxidation number has a good correlation with the recovery and can be used to predict the OAGD recovery.
基金Supported by the Petro China Preliminary Research Project(2021-40217-000041)Changqing Oilfield Technology Development Project(RIPED-JS-50016)。
文摘Based on the mechanisms of gravity displacement,miscibility,viscosity reduction,and imbibition in natural gas flooding,an integrated reservoir construction technology of oil displacement and underground gas storage(UGS)is proposed.This paper systemically describes the technical connotation,site selection principle and optimization process of operation parameters of the gas storage,and advantages of this technology.By making full use of the gravity displacement,miscibility,viscosity reduction,and imbibition features of natural gas flooding,the natural gas can be injected into oil reservoir to enhance oil recovery and build strategic gas storage at the same time,realizing the win-win situation of oil production and natural gas peak shaving.Compared with the gas reservoir storage,the integrated construction technology of gas storage has two profit models:increasing crude oil production and gas storage transfer fee,so it has better economic benefit.At the same time,in this kind of gas storage,gas is injected at high pressure in the initial stage of its construction,gas is injected and produced in small volume in the initial operation stage,and then in large volume in the middle and late operation stage.In this way,the gas storage wouldn’t have drastic changes in stress periodically,overcoming the shortcomings of large stress variations of gas reservoir storage during injection-production cycle due to large gas injection and production volume.The keys of this technology are site selection and evaluation of oil reservoir,and optimization of gravity displacement,displacement pressure,and gas storage operation parameters,etc.The pilot test shows that the technology has achieved initial success,which is a new idea for the rapid development of UGS construction in China.
基金financially supported by the National Key Research Program of China“Collaborative Precision Positioning Project”(No.2016YFB0501900)the National Natural Science Foundation of China(No.41374032)。
文摘The Kaikoura earthquake on November 14,2016 is one of the largest and most complex earthquakes in New Zealand since 1947.Despite the fact that it has ruptured about 12 separate faults,triggered 2132 aftershocks within one week of the mainshock and induced considerable stress changes,few studies have been conducted to comprensively investigate the characteristics.The current study examines the horizontal and vertical displacements as well as the stress and gravity changes,aftershock distributions and also find out whether these changes affect the surrounding regions along the complex fault systems.The study covers the entire area affected by the Kaikoura event,which includes the northern part of the South Island and the southern part of the North Island.The dislocation theory was employed to evaluate the coseismic slip model on the multiple faults.The displacement results revealed that the maximum horizontal displacement is about 6 m and the vertical about 2 m,which are reasonably consistent with earlier study findings.Besides,the stress and gravity changes are quite complicated and inhomogeneous as evidenced by our coseismic model,demonstrating the complexity of the Kaikoura earthquake as well.Almost all the aftershocks are distributed in places where the stress and gravity change are found to be significant.In order to investigate the stability of our stress change models,we applied different friction coefficients and receiver fault parameters.The results justify the friction coefficient(μ=0.4)and the receiver fault parameters(230°,70°,150°)are suitable to define good stress change estimates.According to the stress change results at 15 km depth,the northern parts of the mainshock region,Hundalee fault,Humps fault and Jordan thrust areas together with the Wellington area are closer to failure and situated in a seismic risk zone.The multidimensional analysis adopted in this paper is helpful for making decisions and applications of stress and gravity change models in assessing seismic hazards.
文摘The sound of space-time at the large scale is observed in the form of gravitational waves, which are disturbances in space-time produced by wavelike distortions (or kinks) in the gravitational field of an accelerating parcel or distribution of energy. In this study, we investigate a hypothetical wave mode of quantum space-time, which suggests the existence of scalar Planck waves. According to this hypothesis, the sound of quantum space-time corresponds to kinks propagating in the gravitational displacement field of an oscillating energy density. In evaluating the emission of scalar Planck waves and their effect on the geometry of space-time, one finds that they not only transport a vanishingly small amount of energy but can also be used to simulate gravity.