Petroleum resource assessment using reservoir volumetric approach relies on porosity and oil/gas saturation characterization by laboratory tests.In liquid-rich resource plays,the pore fluids are subject to phase chang...Petroleum resource assessment using reservoir volumetric approach relies on porosity and oil/gas saturation characterization by laboratory tests.In liquid-rich resource plays,the pore fluids are subject to phase changes and mass loss when a drilled core is brought to the surface due to volume expansion and evaporation.Further,these two closely related volumetric parameters are usually estimated separately with gas saturation inferred by compositional complementary law,resulting in a distorted gas to oil ratio under the circumstances of liquid hydrocarbon loss from sample.When applied to liquid-rich shale resource play,this can lead to overall under-estimation of resource volume,distorted gas and oil ratio(GOR),and understated resource heterogeneity in the shale reservoir.This article proposes an integrated mass balance approach for resource calculation in liquid-rich shale plays.The proposed method integrates bulk rock geochemical data with production and reservoir parameters to overcome the problems associated with laboratory characterization of the volumetric parameters by restoring the gaseous and light hydrocarbon loss due to volume expansion and evaporation in the sample.The method is applied to a Duvernay production well(14-16-62-21 W5)in the Western Canada Sedimentary Basin(WCSB)to demonstrate its use in resource evaluation for a liquid-rich play.The results show that(a)by considering the phase behavior of reservoir fluids,the proposed method can be used to infer the quantity of the lost gaseous and light hydrocarbons;(b)by taking into account the lost gaseous and light hydrocarbons,the method generates an unbiased and representative resource potential;and(c)using the corrected oil and gas mass for the analyzed samples,the method produces a GOR estimate close to compositional characteristics of the produced hydrocarbons from initial production in 14-16-62-21 W5 well.展开更多
With increasing global demand for energy,the importance of unconventional shale oil and gas research cannot be over-emphasized.The oil and gas industry requires rapid and reliable means of forecasting production.Exist...With increasing global demand for energy,the importance of unconventional shale oil and gas research cannot be over-emphasized.The oil and gas industry requires rapid and reliable means of forecasting production.Existing traditional decline curve analysis(DCA)methods have been limited in their ability to satisfactorily forecast production from unconventional liquid-rich shale(LRS)reservoirs.This is due to several causes ranging from the complicated production mechanisms to the ultra-low permeability in shales.The use of hybrid(combination)DCA models can improve results.However,complexities associated with these techniques can still make their application quite tedious without proper diagnostic plots,correct use of model parameters and some knowledge of the production mechanisms involved.This work,therefore,presents a new statistical data-driven approach of forecasting production from LRS reservoirs called the Principal Components Methodology(PCM).PCM is a technique that bypasses a lot of the difficulties associated with existing methods of forecasting and forecasts production with reasonable certainty.PCM is a data-driven method of forecasting based on the statistical technique of principal components analysis(PCA).In our study,we simulated production of fluids with different compositions for 30 years with the aid of a commercial compositional simulator.We then applied the Principal Components Methodology(PCM)to the production data from several representative wells by using Singular Value Decomposition(SVD)to calculate the principal components.These principal components were then used to forecast oil production from wells with production histories ranging from 0.5 to 3 years,and the results were compared to simulated data.Application of the PCM to field data is also included in this work.展开更多
准噶尔盆地二叠系芦草沟组是中国最为古老的陆相液态烃页岩层系之一,是近海咸化湖盆混积岩沉积,具有丰富的致密油、页岩油资源,吉木萨尔凹陷是准噶尔盆地东部典型富液态烃凹陷。基于页岩层系实际地质资料分析,发现吉木萨尔凹陷芦草沟组...准噶尔盆地二叠系芦草沟组是中国最为古老的陆相液态烃页岩层系之一,是近海咸化湖盆混积岩沉积,具有丰富的致密油、页岩油资源,吉木萨尔凹陷是准噶尔盆地东部典型富液态烃凹陷。基于页岩层系实际地质资料分析,发现吉木萨尔凹陷芦草沟组页岩层系发育上、下两个含油系统,具有源储一体、薄层叠置、厚度较大、整体含油、连续分布的特征:(1)近海湖泊沉积环境,间歇性海水注入使湖泊生物群体死亡,利于有机质富集保存;细粒混积岩沉积为主,划分为6层2.5个三级沉积旋回;(2)烃源岩主要发育在芦草沟组第2段(P2l2)和第5段(P2l5),岩性主要为碳酸盐质泥岩和硅质泥岩,有机碳含量多大于4%,Ⅱ型干酪根为主,Ro介于0.6%~1.1%,处于生油窗口;(3)储层普遍较致密,岩性主要为碳酸盐岩、碳酸盐质砂岩、硅质砂岩,孔隙度主体介于6%~12%,空气渗透率小于0.1 m D,连通孔喉直径主体介于几十至几百纳米,以粒内孔、粒间溶蚀孔为主,含油饱和度多介于80%~90%,储油条件较好;(4)地层流体压力系统以常压—弱超压为主,原油密度平均为0.8971g/cm^3,50℃平均黏度为165.2m Pa·s,为低—中等热演化程度产物,地层条件下整体流动性较差。吉木萨尔凹陷芦草沟组致密油、页岩油资源丰富,经评价致密油技术可采资源量为0.91×10~8t,其中P_2l_1和P_2l_4是致密油"甜点段",致密油"甜点区"主要分布于凹陷中部;页岩油技术可采资源量为1.10×10~8t,其中P_2l_2和P_2l_5是页岩油"甜点段",页岩油"甜点区"也主要分布于凹陷中部。展开更多
文摘Petroleum resource assessment using reservoir volumetric approach relies on porosity and oil/gas saturation characterization by laboratory tests.In liquid-rich resource plays,the pore fluids are subject to phase changes and mass loss when a drilled core is brought to the surface due to volume expansion and evaporation.Further,these two closely related volumetric parameters are usually estimated separately with gas saturation inferred by compositional complementary law,resulting in a distorted gas to oil ratio under the circumstances of liquid hydrocarbon loss from sample.When applied to liquid-rich shale resource play,this can lead to overall under-estimation of resource volume,distorted gas and oil ratio(GOR),and understated resource heterogeneity in the shale reservoir.This article proposes an integrated mass balance approach for resource calculation in liquid-rich shale plays.The proposed method integrates bulk rock geochemical data with production and reservoir parameters to overcome the problems associated with laboratory characterization of the volumetric parameters by restoring the gaseous and light hydrocarbon loss due to volume expansion and evaporation in the sample.The method is applied to a Duvernay production well(14-16-62-21 W5)in the Western Canada Sedimentary Basin(WCSB)to demonstrate its use in resource evaluation for a liquid-rich play.The results show that(a)by considering the phase behavior of reservoir fluids,the proposed method can be used to infer the quantity of the lost gaseous and light hydrocarbons;(b)by taking into account the lost gaseous and light hydrocarbons,the method generates an unbiased and representative resource potential;and(c)using the corrected oil and gas mass for the analyzed samples,the method produces a GOR estimate close to compositional characteristics of the produced hydrocarbons from initial production in 14-16-62-21 W5 well.
文摘With increasing global demand for energy,the importance of unconventional shale oil and gas research cannot be over-emphasized.The oil and gas industry requires rapid and reliable means of forecasting production.Existing traditional decline curve analysis(DCA)methods have been limited in their ability to satisfactorily forecast production from unconventional liquid-rich shale(LRS)reservoirs.This is due to several causes ranging from the complicated production mechanisms to the ultra-low permeability in shales.The use of hybrid(combination)DCA models can improve results.However,complexities associated with these techniques can still make their application quite tedious without proper diagnostic plots,correct use of model parameters and some knowledge of the production mechanisms involved.This work,therefore,presents a new statistical data-driven approach of forecasting production from LRS reservoirs called the Principal Components Methodology(PCM).PCM is a technique that bypasses a lot of the difficulties associated with existing methods of forecasting and forecasts production with reasonable certainty.PCM is a data-driven method of forecasting based on the statistical technique of principal components analysis(PCA).In our study,we simulated production of fluids with different compositions for 30 years with the aid of a commercial compositional simulator.We then applied the Principal Components Methodology(PCM)to the production data from several representative wells by using Singular Value Decomposition(SVD)to calculate the principal components.These principal components were then used to forecast oil production from wells with production histories ranging from 0.5 to 3 years,and the results were compared to simulated data.Application of the PCM to field data is also included in this work.
文摘准噶尔盆地二叠系芦草沟组是中国最为古老的陆相液态烃页岩层系之一,是近海咸化湖盆混积岩沉积,具有丰富的致密油、页岩油资源,吉木萨尔凹陷是准噶尔盆地东部典型富液态烃凹陷。基于页岩层系实际地质资料分析,发现吉木萨尔凹陷芦草沟组页岩层系发育上、下两个含油系统,具有源储一体、薄层叠置、厚度较大、整体含油、连续分布的特征:(1)近海湖泊沉积环境,间歇性海水注入使湖泊生物群体死亡,利于有机质富集保存;细粒混积岩沉积为主,划分为6层2.5个三级沉积旋回;(2)烃源岩主要发育在芦草沟组第2段(P2l2)和第5段(P2l5),岩性主要为碳酸盐质泥岩和硅质泥岩,有机碳含量多大于4%,Ⅱ型干酪根为主,Ro介于0.6%~1.1%,处于生油窗口;(3)储层普遍较致密,岩性主要为碳酸盐岩、碳酸盐质砂岩、硅质砂岩,孔隙度主体介于6%~12%,空气渗透率小于0.1 m D,连通孔喉直径主体介于几十至几百纳米,以粒内孔、粒间溶蚀孔为主,含油饱和度多介于80%~90%,储油条件较好;(4)地层流体压力系统以常压—弱超压为主,原油密度平均为0.8971g/cm^3,50℃平均黏度为165.2m Pa·s,为低—中等热演化程度产物,地层条件下整体流动性较差。吉木萨尔凹陷芦草沟组致密油、页岩油资源丰富,经评价致密油技术可采资源量为0.91×10~8t,其中P_2l_1和P_2l_4是致密油"甜点段",致密油"甜点区"主要分布于凹陷中部;页岩油技术可采资源量为1.10×10~8t,其中P_2l_2和P_2l_5是页岩油"甜点段",页岩油"甜点区"也主要分布于凹陷中部。